6 resultados para Bus-stop locations

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of multicores is becoming widespread inthe field of embedded systems, many of which have real-time requirements. Hence, ensuring that real-time applications meet their timing constraints is a pre-requisite before deploying them on these systems. This necessitates the consideration of the impact of the contention due to shared lowlevel hardware resources like the front-side bus (FSB) on the Worst-CaseExecution Time (WCET) of the tasks. Towards this aim, this paper proposes a method to determine an upper bound on the number of bus requests that tasks executing on a core can generate in a given time interval. We show that our method yields tighter upper bounds in comparison with the state of-the-art. We then apply our method to compute the extra contention delay incurred by tasks, when they are co-scheduled on different cores and access the shared main memory, using a shared bus, access to which is granted using a round-robin arbitration (RR) protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of COTS-based multicores is becoming widespread in the field of embedded systems. Providing realtime guarantees at design-time is a pre-requisite to deploy real-time systems on these multicores. This necessitates the consideration of the impact of the contention due to shared low-level hardware resources on the Worst-Case Execution Time (WCET) of the tasks. As a step towards this aim, this paper first identifies the different factors that make the WCET analysis a challenging problem in a typical COTS-based multicore system. Then, we propose and prove, a mathematically correct method to determine tight upper bounds on the WCET of the tasks, when they are co-scheduled on different cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current industry trend is towards using Commercially available Off-The-Shelf (COTS) based multicores for developing real time embedded systems, as opposed to the usage of custom-made hardware. In typical implementation of such COTS-based multicores, multiple cores access the main memory via a shared bus. This often leads to contention on this shared channel, which results in an increase of the response time of the tasks. Analyzing this increased response time, considering the contention on the shared bus, is challenging on COTS-based systems mainly because bus arbitration protocols are often undocumented and the exact instants at which the shared bus is accessed by tasks are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. This paper makes three contributions towards analyzing tasks scheduled on COTS-based multicores. Firstly, we describe a method to model the memory access patterns of a task. Secondly, we apply this model to analyze the worst case response time for a set of tasks. Although the required parameters to obtain the request profile can be obtained by static analysis, we provide an alternative method to experimentally obtain them by using performance monitoring counters (PMCs). We also compare our work against an existing approach and show that our approach outperforms it by providing tighter upper-bound on the number of bus requests generated by a task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contention on the memory bus in COTS based multicore systems is becoming a major determining factor of the execution time of a task. Analyzing this extra execution time is non-trivial because (i) bus arbitration protocols in such systems are often undocumented and (ii) the times when the memory bus is requested to be used are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. We present a method for finding an upper bound on the extra execution time of a task due to contention on the memory bus in COTS based multicore systems. This method makes no assumptions on the bus arbitration protocol (other than assuming that it is work-conserving).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.