13 resultados para Breast milk.
em Instituto Politécnico do Porto, Portugal
Resumo:
The development of a FIA system for the determination of total choline content in several types of milk is described. The samples were submitted to hydrochloric acid digestion before injection into the system and passed through an enzymatic reactor containing choline oxidase immobilised on glass beads. This enzymatic reaction releases hydrogen peroxide which then reacts with a solution of iodide. The decrease in the concentration of iodide ion is quantified using an iodide ion selective tubular electrode based on a homogeneous crystalline membrane. Validation of the results obtained with this system was performed by comparison with results from a method described in the literature and applied to the determination of total choline in milks. The relative deviation was always < 5%. The repeatability of the method developed was assessed by calculation of the relative standard deviation (RSD) for 12 consecutive injections of one sample. The RSD obtained was < 0.6%.
Resumo:
Background: An asynchronous eLearning system was developed for radiographers in order to promote a better knowledge about senology and mammography. Objectives: to assess the learners’ satisfaction. Methods: Target population included radiographers and radiogr aphy students, in order to assess eLearning satisfaction according to different experience levels in breast imaging. Satisfaction was measured through a questionnaire developed especially for eLearning systems, using a seven - point Likert scale. Main topics related are content, interface, personalization and learning community. Results: Overall, 85% of learners were satisfied with the course and 87,5% considered that the course is successful. Main areas that were evaluated by most learners in a positive way were interface and content (between six and seven - point); on the other hand, learning community presented a wider distribution of answers . Conclusions: The course provides an overall high degree of learner satisfaction, thus providing more effective knowle dge gain on breast imaging for radiographers.
Resumo:
Background: Diet and physical activity (PA) are recognized as important factors to prevent abdominal obesity (AO), which is strongly associated with chronic diseases. Some studies have reported an inverse association between milk consumption and AO. Objective: This study examined the association between milk intake, PA and AO in adolescents. Methods: A cross-sectional study was conducted with 1209 adolescents, aged 15–18 from the Azorean Archipelago, Portugal in 2008. AO was defined by a waist circumference at or above the 90th percentile. Adolescent food intake was measured using a semi-quantitative food frequency questionnaire, and milk intake was categorized as ‘low milk intake’ (<2 servings per day) or ‘high milk intake’ ( 2 servings per day). PA was assessed via a self-report questionnaire, and participants were divided into active (>10 points) and low-active groups ( 10 points) on the basis of their reported PA. They were then divided into four smaller groups, according to milk intake and PA: (i) low milk intake/low active; (ii) low milk intake/active; (iii) high milk intake/low active and (iv) high milk intake/active. The association between milk intake, PA and AO was evaluated using logistic regression analysis, and the results were adjusted for demographic, body mass index, pubertal stage and dietary confounders. Results: In this study, the majority of adolescents consumed semi-skimmed or skimmed milk (92.3%). The group of adolescents with high level of milk intake and active had a lower proportion of AO than did other groups (low milk intake/low active: 34.2%; low milk intake/active: 26.9%; high milk intake/low active: 25.7%; high milk intake/active: 21.9%, P = 0.008). After adjusting for confounders, low-active and active adolescents with high levels of milk intake were less likely to have AO, compared with low-active adolescents with low milk intake (high milk intake/low active, odds ratio [OR] = 0.412, 95% confidence intervals [CI]: 0.201– 0.845; high milk intake/active adolescents, OR = 0.445, 95% CI: 0.235–0.845).Conclusion: High milk intake seems to have a protective effect on AO, regardless of PA level
Resumo:
Human epidermal growth factor receptor 2 (HER2) is a breast cancer biomarker that plays a major role in promoting breast cancer cell proliferation and malignant growth. The extracellular domain (ECD) of HER2 can be shed into the blood stream and its concentration is measurable in the serum fraction of blood. In this work an electrochemical immunosensor for the analysis of HER2 ECD in human serum samples was developed. To achieve this goal a screen-printed carbon electrode, modified with gold nanoparticles, was used as transducer surface. A sandwich immunoassay, using two monoclonal antibodies, was employed and the detection of the antibody–antigen interaction was performed through the analysis of an enzymatic reaction product by linear sweep voltammetry. Using the optimized experimental conditions the calibration curve (ip vs. log[HER2 ECD]) was established between 15 and 100 ng/mL and a limit of detection (LOD) of 4.4 ng/mL was achieved. These results indicate that the developed immunosensor could be a promising tool in breast cancer diagnostics, patient follow-up and monitoring of metastatic breast cancer since it allows quantification in a useful concentration range and has an LOD below the established cut-off value (15 ng/mL).
Resumo:
Background: Mammography is considered the best imaging technique for breast cancer screening, and the radiographer plays an important role in its performance. Therefore, continuing education is critical to improving the performance of these professionals and thus providing better health care services. Objective: Our goal was to develop an e-learning course on breast imaging for radiographers, assessing its efficacy , effectiveness, and user satisfaction. Methods: A stratified randomized controlled trial was performed with radiographers and radiology students who already had mammography training, using pre- and post-knowledge tests, and satisfaction questionnaires. The primary outcome was the improvement in test results (percentage of correct answers), using intention-to-treat and per-protocol analysis. Results: A total of 54 participants were assigned to the intervention (20 students plus 34 radiographers) with 53 controls (19+34). The intervention was completed by 40 participants (11+29), with 4 (2+2) discontinued interventions, and 10 (7+3) lost to follow-up. Differences in the primary outcome were found between intervention and control: 21 versus 4 percentage points (pp), P<.001. Stratified analysis showed effect in radiographers (23 pp vs 4 pp; P=.004) but was unclear in students (18 pp vs 5 pp; P=.098). Nonetheless, differences in students’ posttest results were found (88% vs 63%; P=.003), which were absent in pretest (63% vs 63%; P=.106). The per-protocol analysis showed a higher effect (26 pp vs 2 pp; P<.001), both in students (25 pp vs 3 pp; P=.004) and radiographers (27 pp vs 2 pp; P<.001). Overall, 85% were satisfied with the course, and 88% considered it successful. Conclusions: This e-learning course is effective, especially for radiographers, which highlights the need for continuing education.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.
Resumo:
Epidemiologic studies have reported an inverse association between dairy product consumption and cardiometabolic risk factors in adults, but this relation is relatively unexplored in adolescents. We hypothesized that a higher dairy product intake is associated with lower cardiometabolic risk factor clustering in adolescents. To test this hypothesis, a cross-sectional study was conducted with 494 adolescents aged 15 to 18 years from the Azorean Archipelago, Portugal. We measured fasting glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, body fat, and cardiorespiratory fitness. We also calculated homeostatic model assessment and total cholesterol/high-density lipoprotein cholesterol ratio. For each one of these variables, a z score was computed using age and sex. A cardiometabolic risk score (CMRS) was constructed by summing up the z scores of all individual risk factors. High risk was considered to exist when an individual had at least 1 SD from this score. Diet was evaluated using a food frequency questionnaire, and the intake of total dairy (included milk, yogurt, and cheese), milk, yogurt, and cheese was categorized as low (equal to or below the median of the total sample) or “appropriate” (above the median of the total sample).The association between dairy product intake and CMRS was evaluated using separate logistic regression, and the results were adjusted for confounders. Adolescents with high milk intake had lower CMRS, compared with those with low intake (10.6% vs 18.1%, P = .018). Adolescents with appropriate milk intake were less likely to have high CMRS than those with low milk intake (odds ratio, 0.531; 95% confidence interval, 0.302-0.931). No association was found between CMRS and total dairy, yogurt, and cheese intake. Only milk intake seems to be inversely related to CMRS in adolescents.
Resumo:
Dairy foods comprise a range of products with varying nutritional content. The intake of dairy products (DPs) has been shown to have beneficial effects on body weight and body fat. This study aimed to examine the independent association between DP intake, body mass index (BMI), and percentage body fat (%BF) in adolescents. A cross-sectional, school-based study was conducted with 1,001 adolescents (418 boys), ages 15–18 years, from the Azorean Archipelago, Portugal. Anthropometric measurements were recorded (weight and height), and %BF was assessed using bioelectric impedance analysis. Adolescent food intake was measured using a self-administered, semiquantitative food frequency questionnaire. Data were analyzed separately for girls and boys, and separate multiple linear regression analysis was used to estimate the association between total DP, milk, yogurt, and cheese intake, BMI, and %BF, adjusting for potential confounders. For boys and girls, respectively, total DP consumption was 2.6 ± 1.9 and 2.9 ± 2.5 servings/day (P = 0.004), while milk consumption was 1.7 ± 1.4 and 2.0 ± 1.7 servings/day (P = 0.001), yogurt consumption was 0.5 ± 0.6 and 0.4 ± 0.7 servings/day (P = 0.247), and cheese consumption was 0.4 ± 0.6 and 0.5 ± 0.8 servings/day (P = 0.081). After adjusting for age, birth weight, energy intake, protein, total fat, sugar, dietary fiber, total calcium intake, low-energy reporters, parental education, pubertal stage, and physical activity, only milk intake was negatively associated with BMI and %BF in girls (respectively, girls: β = −0.167, P = 0.013; boys: β = −0.019, P = 0.824 and girls: β = −0.143, P = 0.030; boys: β = −0.051, P = 0.548). Conclusion: We found an inverse association between milk intake and both BMI and %BF only in girls.
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.
Resumo:
Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.