5 resultados para Brand Commitment

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the optimal natural gas commitment for a known demand scenario. This study implies the best location of GSUs to supply all demands and the optimal allocation from sources to gas loads, through an appropriate transportation mode, in order to minimize total system costs. Our emphasis is on the formulation and use of a suitable optimization model, reflecting real-world operations and the constraints of natural gas systems. The mathematical model is based on a Lagrangean heuristic, using the Lagrangean relaxation, an efficient approach to solve the problem. Computational results are presented for Iberian and American natural gas systems, geographically organized in 65 and 88 load nodes, respectively. The location model results, supported by the computational application GasView, show the optimal location and allocation solution, system total costs and suggest a suitable gas transportation mode, presented in both numerical and graphic supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a wide agreement that identity is a multidisciplinary concept. The authors consider this an opportunity do develop a framework to assess identity. In a marketing context, literature reveals two approaches on identity: one focus on corporate identity and the other focus on branding. The aim of this paper is to integrate these two approaches to develop a synthesis framework to assess brand identity. Based on literature on identity the authors found nine components related to brand identity. Those components are described in this paper as well as the relation they have with brand identity. The authors hope that this synthesis approach contributes to a better understanding of the brand identity, and are very encouraging for refining this framework in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identity is traditionally defined as an emission concept [1]. Yet, some research points out that there are external factors that can influence it [2]; [3]; [4]. This subject is even more relevant if one considers corporate brands. According to Aaker [5] the number, the power and the credibility of corporate associations are bigger in the case of corporate brands. Literature recognizes the influence of relationships between companies in identity management. Yet, given the increasingly important role of corporate brands, it is surprising that to date no attempt to evaluate that influence has been made in the management of corporate brand identity. Also Keller and Lehman [6] highlight relationships and costumer experience as two areas requiring more investigation. In line with this, the authors intend to develop an empirical research in order to evaluate the influence of relationships between brands in the identity of corporate brand from an internal perspective by interviewing internal stakeholders (brand managers and internal clients). This paper is organized by main contents: theoretical background, research methodology, data analysis and conclusions and finally cues to future investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.