18 resultados para Block-belt dynamical systems
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.
Resumo:
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and fractional calculus (FC). This new standpoint uses Multidimensional Scaling (MDS) as a powerful clustering and visualization tool. FC extends the concepts of integrals and derivatives to non-integer and complex orders. MDS is a technique that produces spatial or geometric representations of complex objects, such that those objects that are perceived to be similar in some sense are placed on the MDS maps forming clusters. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analysed. The events are characterized by their magnitude and spatiotemporal distributions and are divided into fifty groups, according to the Flinn–Engdahl (F–E) seismic regions of Earth. Several correlation indices are proposed to quantify the similarities among regions. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools for understanding the global behaviour of earthquakes.
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.
Resumo:
Fractional dynamics reveals long range memory properties of systems described by means of signals represented by real numbers. Alternatively, dynamical systems and signals can adopt a representation where states are quantified using a set of symbols. Such signals occur both in nature and in man made processes and have the potential of a aftermath as relevant as the classical counterpart. This paper explores the association of Fractional calculus and symbolic dynamics. The results are visualized by means of the multidimensional technique and reveal the association between the fractal dimension and one definition of fractional derivative.
Resumo:
This paper studies a discrete dynamical system of interacting particles that evolve by interacting among them. The computational model is an abstraction of the natural world, and real systems can range from the huge cosmological scale down to the scale of biological cell, or even molecules. Different conditions for the system evolution are tested. The emerging patterns are analysed by means of fractal dimension and entropy measures. It is observed that the population of particles evolves towards geometrical objects with a fractal nature. Moreover, the time signature of the entropy can be interpreted at the light of complex dynamical systems.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
This paper analyzes several natural and man-made complex phenomena in the perspective of dynamical systems. Such phenomena are often characterized by the absence of a characteristic length-scale, long range correlations and persistent memory, which are features also associated to fractional order systems. For each system, the output, interpreted as a manifestation of the system dynamics, is analyzed by means of the Fourier transform. The amplitude spectrum is approximated by a power law function and the parameters are interpreted as an underlying signature of the system dynamics. The complex systems under analysis are then compared in a global perspective in order to unveil and visualize hidden relationships among them.
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.