6 resultados para Biosusceptometry of Alternate Current
em Instituto Politécnico do Porto, Portugal
Resumo:
When the Internet was born, the purpose was to interconnect computers to share digital data at large-scale. On the other hand, when embedded systems were born, the objective was to control system components under real-time constraints through sensing devices, typically at small to medium scales. With the great evolution of the Information and Communication Technology (ICT), the tendency is to enable ubiquitous and pervasive computing to control everything (physical processes and physical objects) anytime and at a large-scale. This new vision gave recently rise to the paradigm of Cyber-Physical Systems (CPS). In this position paper, we provide a realistic vision to the concept of the Cyber-Physical Internet (CPI), discuss its design requirements and present the limitations of the current networking abstractions to fulfill these requirements. We also debate whether it is more productive to adopt a system integration approach or a radical design approach for building large-scale CPS. Finally, we present a sample of realtime challenges that must be considered in the design of the Cyber-Physical Internet.
Resumo:
Due to the growing complexity and adaptability requirements of real-time systems, which often exhibit unrestricted Quality of Service (QoS) inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may be inter-dependent. This paper focuses on optimising a dynamic local set of inter-dependent tasks that can be executed at varying levels of QoS to achieve an efficient resource usage that is constantly adapted to the specific constraints of devices and users, nature of executing tasks and dynamically changing system conditions. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
Adhesive bonding is a viable technique for joining a wide range of materials. However, increasing the lifetime, reducing the costs, and improving the safety of structures are highly demanded nowadays. Hence, the development of new technologies and processes for easy recycle, heal, or self-heal of bonded structures are becoming of great interest for the industry. This paper provides an overview of the current developments in the use of “smart” adhesive technology and introduces the reader to early findings on the use of self-healing materials, thermally expandable particles, and nanoparticles, among others, in adhesives and their potential to increase the reliability of adhesive joints.
Resumo:
The goal of this EPS@ISEP project proposed in the Spring of 2014 was to develop a flapping wing flying robot. The project was embraced by a multinational team composed of four students from different countries and fields of study. The team designed and implemented a robot inspired by a biplane design, constructed from lightweight materials and battery powered. The prototype, called MyBird, was built with a 250 € budget, reuse existing materials as well as low cost solutions. Although the team's initial idea was to build a light radio controlled robot, time limitations along with setbacks involving the required electrical components led to a light but not radio controlled prototype. The team, from the experience gathered, made a number of future improvement suggestions, namely, the addition of radio control and a camera and the adoption of articulated monoplane design instead of the current biplane design for the wings.
Resumo:
Este trabalho baseia se na necessidade de aumentar as fontes renováveis de energia, reduzindo assim a dependência de fontes não renováveis, principalmente as poluentes como as de provenientes de combustíveis fosseis. A fonte de energia renovável explorada neste trabalho é a advinda de energia solar, com a utilização de painéis solares e métodos de extração para converter esta energia em energia elétrica e assim poder utilizar esta energia de forma eficiente. A energia produzida por painéis fotovoltaicos se apresenta em forma de corrente continua, tendo assim a necessidade do uso de conversores CC-CA, ou ditos inversores de tensão, para utilização da mesma, já que a maioria do equipamentos que utilizam energia elétrica são construídos em forma a serem abastecidos com energia elétrica em corrente alternada. Como este trabalho foca na injeção da energia produzida pelos painéis FV na rede de distribuição de baixa tensão, faz se necessário o uso de um PLL para garantir que o sistema inversor esteja em sincronismo com a rede de distribuição e possa garantir a entrega de energia ativa. Por fim mas não menos importante, é utilizado neste projeto técnicas de MPPT para garantir um maior aproveitamento da energia proveniente dos painéis FV, ajudando assim a melhorar a eficácia deste tipo de energia, sendo mais fiável e viável.