3 resultados para Biology, Molecular|Biology, Cell|Biology, Microbiology

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

β-lactamases are hydrolytic enzymes that inactivate the β-lactam ring of antibiotics such as penicillins and cephalosporins. The major diversity of studies carried out until now have mainly focused on the characterization of β-lactamases recovered among clinical isolates of Gram-positive staphylococci and Gram-negative enterobacteria, amongst others. However, only some studies refer to the detection and development of β-lactamases carriers in healthy humans, sick animals, or even in strains isolated from environmental stocks such as food, water, or soils. Considering this, we proposed a 10-week laboratory programme for the Biochemistry and Molecular Biology laboratory for majors in the health, environmental, and agronomical sciences. During those weeks, students would be dealing with some basic techniques such as DNA extraction, bacterial transformation, polymerase chain reaction (PCR), gel electrophoresis, and the use of several bioinformatics tools. These laboratory exercises would be conducted as a mini research project in which all the classes would be connected with the previous ones. This curriculum was compared in an experiment involving two groups of students from two different majors. The new curriculum, with classes linked together as a mini research project, was taught to a major in Pharmacy and an old curriculum was taught to students from environmental health. The results showed that students who were enrolled in the new curriculum obtained better results in the final exam than the students who were enrolled in the former curriculum. Likewise, these students were found to be more enthusiastic during the laboratory classes than those from the former curriculum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADPsensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.