14 resultados para Biological clock
em Instituto Politécnico do Porto, Portugal
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
New PVC membrane electrodes for the determination of sulfadiazine (SDZ) are presented. The electrodes are fabricated with conventional and tubular configurations with a graphite-based electrical contact, and no internal reference solution. The selective membranes consist of bis(triphenylphosphoranilidene)ammonium·SDZ (electrode A), tetraoctylammonium bromide (electrode B), or iron(II)-phthalocyanine (FePC) (electrode C) electroactive materials dispersed in a PVC matrix of o-nitrophenyl octyl ether (o-NPOE) plasticizer. The sensors A, B, and C displayed linear responses over the concentration ranges 1.0*10-2 – 1.0*10–5, 1.0*10–2 – 7.5*10–6, and 3.2*10–2 – 7.0* 10–6 mol l–1 (detection limits of 1.09, 2.04 and 0.87 mg ml–1) with anionic slopes of –57.3 ± 0.1, –46.7 ± 0.5, and –65.1 ± 0.2 mV decade–1, respectively. No effect from pH was observed within 4.0 – 5.5, 4.8 – 10, and 4.5 – 8, respectively, and good selectivity was found. The sensors were applied to the analysis of pharmaceuticals and biological fluids in steady state and in flow conditions.
Resumo:
New potentiometric membrane sensors with cylindrical configuration for tetracycline (TC) are described based on the use of a newly designed molecularly imprinted polymer (MIP) material consisting of 2-vinylpyridine as a functional monomer in a plasticized PVC membrane. The sensor exhibited significantly enhanced response towards TC over the concentration range 1.59 10 5–1.0 10 3 mol L 1 at pH 3–5 with a lower detection limit of 1.29 10 5 mol L 1. The response was near-Nernstian, with average slopes of 63.9 mV decade 1. The effect of lipophilic salts and various foreign common ions were tested and were found to be negligible. The possibility of applying the proposed sensor to TC determination in spiked biological fluid samples was demonstrated.
Resumo:
A square-wave voltammetric (SWV) method using a hanging mercury drop electrode (HMDE) has been developed for determination of the herbicide molinate in a biodegradation process. The method is based on controlled adsorptive accumulation of molinate for 10 s at a potential of -0.8 V versus AgCl/Ag. An anodic peak, due to oxidation of the adsorbed pesticide, was observed in the cyclic voltammogram at ca. -0.320 V versus AgCl/Ag; a very small cathodic peak was also detected. The SWV calibration plot was established to be linear in the range 5.0x10-6 to 9.0x10-6 mol L-1; this corresponded to a detection limit of 3.5x10-8 mol L-1. This electroanalytical method was used to monitor the decrease of molinate concentration in river waters along a biodegradation process using a bacterial mixed culture. The results achieved with this voltammetric method were compared with those obtained by use of a chromatographic method (HPLC–UV) and no significant statistical differences were observed.
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
As the prostate cancer (PCa) progresses, sarcosine levels increase both in tumor cells and urine samples, suggesting that this metabolite measurements can help in the creation of non-invasive diagnostic methods for this disease. In this work, a biosensor device was developed for the quantification of sarcosine via electrochemical detection of H2O2 (at 0.6 V) generated from the catalyzed oxidation of sarcosine. The detection was carried out after the modification of carbon screen printed electrodes (SPEs) by immobilization of sarcosine oxidase (SOX) on the electrode surface. The strategies used herein included the activation of the carbon films by an electrochemical step and the formation of an NHS/EDAC layer to bond the enzyme to the electrode, the use of metallic or semiconductor nanoparticles layer previously or during the enzyme immobilization. In order to improve the sensor stability and selectivity a polymeric layer with extra enzyme content was further added. The proposed methodology for the detection of sarcosine allowed obtaining a limit of detection (LOD) of 16 nM, using a linear concentration range between 10 and 100 nM. The biosensor was successfully applied to the analysis of sarcosine in urine samples.
Resumo:
XIX Meeting of the Portuguese Electrochemical Society - XVI Iberic Meeting of Electrochemistry
Resumo:
Eight new peptides were isolated from the skin secretion of the frog Leptodactylus pustulatus and their amino acid sequences determined by de novo sequencing and by cDNA cloning. Structural similarities between them and other antimicrobial peptides from the skin secretion of Leptodactylus genus frogs were found. Ocellatins-PT1 to -PT5 (25 amino acid residues) are amidated at the C-terminus, while ocellatins-PT6 to -PT8 (32 amino acid residues) have free carboxylates. Antimicrobial activity, hemolytic tests, and cytotoxicity against a murine fibroblast cell line were investigated. All peptides, except for ocellatin-PT2, have antimicrobial activity against at least one Gram negative strain. Ocellatin-PT8 inhibited the growth of Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella choleraesuis strains with MICs in the 60−240 μM range. No significant effect was observed in human erythrocytes and in a murine fibroblast cell line after exposure to the peptides at MICs. A comparison between sequences obtained by both direct HPLC-MS de novo sequencing and cDNA cloning demonstrates the secretion of mature peptides derived from a pre-pro-peptide structure.
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
The study of chemical diffusion in biological tissues is a research field of high importance and with application in many clinical, research and industrial areas. The evaluation of diffusion and viscosity properties of chemicals in tissues is necessary to characterize treatments or inclusion of preservatives in tissues or organs for low temperature conservation. Recently, we have demonstrated experimentally that the diffusion properties and dynamic viscosity of sugars and alcohols can be evaluated from optical measurements. Our studies were performed in skeletal muscle, but our results have revealed that the same methodology can be used with other tissues and different chemicals. Considering the significant number of studies that can be made with this method, it becomes necessary to turn data processing and calculation easier. With this objective, we have developed a software application that integrates all processing and calculations, turning the researcher work easier and faster. Using the same experimental data that previously was used to estimate the diffusion and viscosity of glucose in skeletal muscle, we have repeated the calculations with the new application. Comparing between the results obtained with the new application and with previous independent routines we have demonstrated great similarity and consequently validated the application. This new tool is now available to be used in similar research to obtain the diffusion properties of other chemicals in different tissues or organs.