17 resultados para Binder melting

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. Ionic liquids were used mainly as solvent in organic synthesis, but in recent years they are also used in analytical chemistry, separation chemistry and material science. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences. Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an anion with bacterial activity as β-lactam antibiotics and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with β-lactam antibiotics. After crystallization we obtained pure ILs and salts containing β-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their chemistry and microbiological characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic Liquids (ILs) are ionic compounds that possess melting temperature below 100ºC and they have been a topic of great interest since the mid-1990s due to their unique properties. The range of IL uses has been broadened, due to a significant increase in the variety of physical, chemical and biological ILs properties. They are now used as Active Pharmaceutical Ingredients (APIs) and recent interests are focused on their application as innovative solutions in new medical treatment and delivery options.1 In this work, our principal objective was the synthesis and investigation of physicochemical and medical properties of ionic liquids (ILs) and organic salts from ampicillin. This approach is of huge interest in pharmaceutical industry as cation and anion composition of ILs and organic salts can greatly alter their desired properties, namely the melting temperature and even synergistic effects can be obtained.2,3 For the synthesis of these compounds we used a recently developed method proposed by Ohno et al.4 for the preparation of quaternary ammonium and phosphonium hydroxides, that were neutralized by ampicillin. After purification we obtained pure ILs and salts in good yields. These ILs shows good antimicrobial and antifungal activities. As it is well known that some ionic liquids containing phosphonium and ammonium cation also shows anti-cancer activity1,5 we also decided to study these compounds against some cancer cell lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increase of bacterial resistance a large number of therapeutic strategies have been used to fight different kind of infections. In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. First ionic liquids were used mainly as solvent in organic synthesis, but now they are used in analytical chemistry, separation chemistry and material science among others. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an ion with bacterial activity as a beta-lactam antibiotic and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides. on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with beta-lactam antibiotics. After crystallization we obtained pure ILs and salts containing beta-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Geotécnica e Geoambiente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Geotécnica e Geoambiente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo diz respeito a um trabalho de pesquisa no âmbito de uma Tese de Mestrado incluída no segundo ciclo de estudos do curso de Engenharia Geotécnica e Geoambiente, realizado sobre as condições de desidroxilação para a obtenção de metacaulino com propriedades cimentíceas, a partir da fracção argilosa proveniente dos finos residuais da produção de areias de natureza granítica. O produto resultante da alteração e desintegração dos feldspatos constituintes dos granitos são ricos em caulinite. Na natureza e em particular no Norte de Portugal, existem significativos depósitos cauliníticos com características potenciadoras para a produção de metacaulino. O metacaulino utilizado neste estudo foi obtido de uma amostra de argila submetida a 750oC, por um período de tempo de 30 minutos, processo que permitiu a desidroxilação quase total da matéria-prima, transformando esta numa fase amorfa e irreversível, com propriedades pozolânicas. Os metacaulinos, também conhecidos por geopolímeros, são produtos de fácil produção utilizando uma matéria-prima abundante e proporcionam a obtenção de novos produtos que permitem a substituição parcial do cimento Portland normal na composição das pastas de betão, com vantagens significativas no comportamento mecânico e na resistência aos agentes atmosféricos. Neste estudo são apresentados os resultados dos ensaios de caracterização da matéria-prima, das condições de calcinação e do produto resultante da desidroxilação, nomeadamente a determinação da pozolanicidade e das características fundamentais para a aplicabilidade do produto. No âmbito da especialidade de Georrecursos, consideramos que este trabalho está perfeitamente adequado, já que, para além do estudo para o conhecimento das propriedades da matéria-prima, foi possível, através das alterações introduzidas com o tratamento térmico, obter um novo produto, cuja utilização terá importantes reflexos na sustentabilidade dos recursos naturais e sua utilização.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical properties of agar (yield, gel strength, gelling and melting temperatures, as well as, sulphate and 3,6-anhydro-Lgalactose contents) was evaluated in a 2^4 orthogonal composite design. The quality of the extracted agar compared favorably with the attained using traditional extraction (2 h at 85ºC) while reducing drastically extraction time, solvent consumption and waste disposal requirements. Agar MAE optimum results were: an yield of 14.4 ± 0.4%, a gel strength of 1331 ± 51 g/cm2, 40.7 ± 0.2 _C gelling temperature, 93.1 ± 0.5ºC melting temperature, 1.73 ± 0.13% sulfate content and 39.4 ± 0.3% 3,6-anhydro-L-galactose content. Furthermore, this study suggests the feasibility of the exploitation of G. vermiculophylla grew in IMTA systems for agar production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, glass fibre reinforced polymer (GFRP) waste recycling is very limited and restricted by thermoset nature of binder matrix and lack of economically viable enduse applications for the recyclates. In this study, efforts were made in order to recycle grinded GFRP waste proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, a mix of powdered and fibrous materials, were incorporated into polyester based mortars as fine aggregate and filler replacements, at different load contents (between 4% up to 12% of total mass) and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Test results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse in concrete-polymer composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os Líquidos Iónicos (LIs) são sais orgânicos constituídos exclusivamente por iões e possuem pontos de fusão inferiores a 100ºC. As suas propriedades únicas e o facto de ser possível ajustar as suas propriedades físicas, químicas e biológicas, de acordo com o objetivo pretendido, tornam esta classe de compostos, um grande objeto de estudo de inúmeros investigadores. Desde os inícios da sua aplicação até à atualidade, a investigação nesta área expandiu o seu raio de ação, estando já descrito o seu potencial como agentes antimicrobianos e, mais recentemente, como compostos farmacêuticos ativos. Atualmente muitas das suas aplicações são baseadas nas suas propriedades biológicas. Esta Tese teve como objetivo avaliar a influência que os LIs podem exercer a nível do crescimento bacteriano e estudar alternativas de combater a resistência bacteriana. Todos os LIs utilizados neste trabalho tinham como anião o ácido valpróico, sendo utilizados catiões orgânicos de amónio e de imidazólio. Foram utilizadas 4 bactérias e avaliou-se a atividade biológica e a respetiva taxa de crescimento. O estudo da sua atividade biológica foi feito através da determinação da Concentração Mínima Inibitória (CMI) e a análise das suas curvas de crescimentos na presença e ausência de composto. Com este trabalho foi possível verificar que dentro dos compostos em estudo, LIs derivados do valproato, o Valproato com o cetilperidínio [valp] [cetylpir] foi o que influenciou o crescimento de todas as bactérias estudadas. Este estudo demonstrou o potencial antibacteriano de alguns compostos, podendo desta forma vir a ser utilizados para fins farmacêuticos