2 resultados para Beta-1-adrenoceptor
em Instituto Politécnico do Porto, Portugal
Resumo:
With the increase of bacterial resistance a large number of therapeutic strategies have been used to fight different kind of infections. In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. First ionic liquids were used mainly as solvent in organic synthesis, but now they are used in analytical chemistry, separation chemistry and material science among others. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an ion with bacterial activity as a beta-lactam antibiotic and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides. on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with beta-lactam antibiotics. After crystallization we obtained pure ILs and salts containing beta-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their characterization.
Resumo:
When a pesticide is released into the environment, most of it is lost before it reaches its target. An effective way to reduce environmental losses of pesticides is by using controlled release technology. Microencapsulation becomes a promising technique for the production of controlled release agricultural formulations. In this work, the microencapsulation of chlorophenoxy herbicide MCPA with native b-cyclodextrin and its methyl and hydroxypropyl derivatives was investigated. The phase solubility study showed that both native and b-CD derivatives increased the water solubility of the herbicide and inclusion complexes are formed in a stoichiometric ratio of 1:1. The stability constants describing the extent of formation of the complexes have been determined by phase solubility studies. 1H NMR experiments were also accomplished for the prepared solid systems and the data gathered confirm the formation of the inclusion complexes. 1H NMR data obtained for the MCPA/CDs complexes disclosed noticeable proton shift displacements for OCH2 group and H6 aromatic proton of MCPA provided clear evidence of inclusion complexation process, suggesting that the phenyl moiety of the herbicide was included in the hydrophobic cavity of CDs. Free energy molecular mechanics calculations confirm all these findings. The gathered results can be regarded as an essential step to the development of controlled release agricultural formulations containing herbicide MCPA.