2 resultados para Ban Napo
em Instituto Politécnico do Porto, Portugal
Resumo:
We consider reliable communications in Body Area Networks (BAN), where a set of nodes placed on human body are connected using wireless links. In order to keep the Specific Absorption Rate (SAR) as low as possible for health safety reasons, these networks operate in low transmit power regime, which however, is known to be error prone. It has been observed that the fluctuations of the Received Signal Strength (RSS) at the nodes of a BAN on a moving person show certain regularities and that the magnitude of these fluctuations are significant (5 - 20 dB). In this paper, we present BANMAC, a MAC protocol that monitors and predicts the channel fluctuations and schedules transmissions opportunistically when the RSS is likely to be higher. The MAC protocol is capable of providing differentiated service and resolves co-channel interference in the event of multiple co-located BANs in a vicinity. We report the design and implementation details of BANMAC integrated with the IEEE 802.15.4 protocol stack. We present experimental data which show that the packet loss rate (PLR) of BANMAC is significantly lower as compared to that of the IEEE 802.15.4 MAC. For comparable PLR, the power consumption of BANMAC is also significantly lower than that of the IEEE 802.15.4. For co-located networks, the convergence time to find a conflict-free channel allocation was approximately 1 s for the centralized coordination mechanism and was approximately 4 s for the distributed coordination mechanism.
Resumo:
Significant research efforts are being devoted to Body Area Networks (BAN) due to their potential for revolutionizing healthcare practices. Energy-efficiency and communication reliability are critically important for these networks. In an experimental study with three different mote platforms, we show that changes in human body shadowing as well as those in the relative distance and orientation of nodes caused by the common human body movements can result in significant fluctuations in the received signal strength within a BAN. Furthermore, regular movements, such as walking, typically manifest in approximately periodic variations in signal strength. We present an algorithm that predicts the signal strength peaks and evaluate it on real-world data. We present the design of an opportunistic MAC protocol, named BANMAC, that takes advantage of the periodic fluctuations of the signal strength to achieve high reliability even with low transmission power.