9 resultados para Automatic adjustment
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Atualmente a vantagem competitiva de uma empresa passa pela sua rápida adaptação às variações de procura do mercado, sendo necessário garantir elevados níveis de produtividade e, simultaneamente, grande flexibilidade, indispensável ao fabrico de pequenos lotes. A necessidade de ajuste do processo e a diminuição da média de vida do produto levam a paragens cada vez mais frequentes da célula de fabrico para programação e afinação, com consequentes perdas de produtividade. De forma a dar resposta a estes problemas, neste trabalho é testada a viabilidade da utilização da programação e simulação offline de tarefas de lixamento na Grohe Portugal, complementando a solução com o desenvolvimento de um novo método de afinação do programa, permitindo uma adaptação às flutuações do processo produtivo. Para isso foi necessário analisar o estado da arte dos robôs industriais na área de acabamento superficial e respetivos métodos de programação. Em seguida, após um trabalho prévio rigoroso de preparação e modelação da célula de trabalho, é possível fazer a programação offline das várias rotinas e trajetórias complexas que compõem um ciclo de lixamento de um produto, contribuindo para o aumento da qualidade do produto final sem comprometer os níveis de produtividade. Nesta dissertação são descritos e detalhados alguns dos procedimentos fulcrais no sucesso da aplicação deste método de programação. Por último é feita uma nova abordagem ao método de ajuste ponto-a-ponto convencional, desenvolvendo-se para isso um sistema de ajuste automático do programa, dotando o robô da capacidade de se adaptar às variações do processo, assegurando a consistência do mesmo. Foram realizados testes em pequena escala, extrapolando-se os resultados para a aplicação deste novo método no processo produtivo da Grohe Portugal, como forma de complemento ao método convencional de ajuste ponto-a-ponto do programa, reduzindo o tempo de paragem da célula de trabalho.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
In the last few years, the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems, the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how pleasant is a voice from a perceptual point of view when the final application is a speech based interface. In this paper we present an objective definition for voice pleasantness based on the composition of a representative feature subset and a new automatic voice pleasantness classification and intensity estimation system. Our study is based on a database composed by European Portuguese female voices but the methodology can be extended to male voices or to other languages. In the objective performance evaluation the system achieved a 9.1% error rate for voice pleasantness classification and a 15.7% error rate for voice pleasantness intensity estimation.
Resumo:
The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.
Resumo:
Demand response is an energy resource that has gained increasing importance in the context of competitive electricity markets and of smart grids. New business models and methods designed to integrate demand response in electricity markets and of smart grids have been published, reporting the need of additional work in this field. In order to adequately remunerate the participation of the consumers in demand response programs, improved consumers’ performance evaluation methods are needed. The methodology proposed in the present paper determines the characterization of the baseline approach that better fits the consumer historic consumption, in order to determine the expected consumption in absent of participation in a demand response event and then determine the actual consumption reduction. The defined baseline can then be used to better determine the remuneration of the consumer. The paper includes a case study with real data to illustrate the application of the proposed methodology.
Resumo:
In this paper, a rule-based automatic syllabifier for Danish is described using the Maximal Onset Principle. Prior success rates of rule-based methods applied to Portuguese and Catalan syllabification modules were on the basis of this work. The system was implemented and tested using a very small set of rules. The results gave rise to 96.9% and 98.7% of word accuracy rate, contrary to our initial expectations, being Danish a language with a complex syllabic structure and thus difficult to be rule-driven. Comparison with data-driven syllabification system using artificial neural networks showed a higher accuracy rate of the former system.
Resumo:
In the last few years the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how good is a voice when the application is a speech based interface. In this paper we present a new automatic voice pleasantness classification system based on prosodic and acoustic patterns of voice preference. Our study is based on a multi-language database composed by female voices. In the objective performance evaluation the system achieved a 7.3% error rate.
Resumo:
Os sistemas de monitorização de estruturas fornecem diversas vantagens, não só no que diz respeito à durabilidade da obra, ao aumento da segurança e do conhecimento relativamente ao comportamento das estruturas ao longo do tempo, à otimização do aspeto estrutural, bem como aos aspetos económicos do processo de construção e manutenção. A monitorização deve realizar-se durante a fase de construção e/ou de exploração da obra para permitir o registo integral do seu comportamento no meio externo. Deve efetuar-se de forma contínua e automática, executando intervenções de rotina para que se possa detetar precocemente sinais de alterações, respetivamente à segurança, integridade e desempenho funcional. Assim se poderá manter a estrutura dentro de parâmetros aceitáveis de segurança. Assim, na presente dissertação será concebido um demonstrador experimental, para ser estudado em laboratório, no qual será implementado um sistema de monitorização contínuo e automático. Sobre este demonstrador será feita uma análise de diferentes grandezas em medição, tais como: deslocamentos, extensões, temperatura, rotações e acelerações. Com carácter inovador, pretende-se ainda incluir neste modelo em sintonia de medição de coordenadas GNSS com o qual se torna possível medir deslocamentos absolutos. Os resultados experimentais alcançados serão analisados e comparados com modelos numéricos. Conferem-se os resultados experimentais de natureza estática e dinâmica, com os resultados numéricos de dois modelos de elementos finitos: um de barras e outro de casca. Realizaram-se diferentes abordagens tendo em conta as características identificadas por via experimental e calculadas nos modelos numéricos para melhor ajuste e calibração dos modelos numéricos Por fim, recorre-se a algoritmos de processamento e tratamento do respetivo sinal com aplicação de filtros, que revelam melhorar com rigor o sinal, de forma a potenciar as técnicas de fusão multisensor. Pretende-se integrar o sinal GNSS com os demais sensores presentes no sistema de monitorização. As técnicas de fusão multisensor visam melhor o desempenho deste potencial sistema de medição, demonstrando as suas valências no domínio da monitorização estrutural.