1 resultado para Autocorrelação
em Instituto Politécnico do Porto, Portugal
Resumo:
As empresas nacionais deparam-se com a necessidade de responder ao mercado com uma grande variedade de produtos, pequenas séries e prazos de entrega reduzidos. A competitividade das empresas num mercado global depende assim da sua eficiência, da sua flexibilidade, da qualidade dos seus produtos e de custos reduzidos. Para se atingirem estes objetivos é necessário desenvolverem-se estratégias e planos de ação que envolvem os equipamentos produtivos, incluindo: a criação de novos equipamentos complexos e mais fiáveis, alteração dos equipamentos existentes modernizando-os de forma a responderem às necessidades atuais e a aumentar a sua disponibilidade e produtividade; e implementação de políticas de manutenção mais assertiva e focada no objetivo de “zero avarias”, como é o caso da manutenção preditiva. Neste contexto, o objetivo principal deste trabalho consiste na previsão do instante temporal ótimo da manutenção de um equipamento industrial – um refinador da fábrica de Mangualde da empresa Sonae Industria, que se encontra em funcionamento contínuo 24 horas por dia, 365 dias por ano. Para o efeito são utilizadas medidas de sensores que monitorizam continuamente o estado do refinador. A principal operação de manutenção deste equipamento é a substituição de dois discos metálicos do seu principal componente – o desfibrador. Consequentemente, o sensor do refinador analisado com maior detalhe é o sensor que mede a distância entre os dois discos do desfibrador. Os modelos ARIMA consistem numa abordagem estatística avançada para previsão de séries temporais. Baseados na descrição da autocorrelação dos dados, estes modelos descrevem uma série temporal como função dos seus valores passados. Neste trabalho, a metodologia ARIMA é utilizada para determinar um modelo que efetua uma previsão dos valores futuros do sensor que mede a distância entre os dois discos do desfibrador, determinando-se assim o momento ótimo da sua substituição e evitando paragens forçadas de produção por ocorrência de uma falha por desgaste dos discos. Os resultados obtidos neste trabalho constituem uma contribuição científica importante para a área da manutenção preditiva e deteção de falhas em equipamentos industriais.