6 resultados para Asymptotic covariance matrix
em Instituto Politécnico do Porto, Portugal
Resumo:
Human Computer Interaction (HCl) is to interaction between computers and each person. And context-aware (CA) is very important one of HCI composition. In particular, if there are sequential or continuous tasks between users and devices, among users, and among devices etc, it is important to decide the next action using right CA. And to take perfect decision we have to get together all CA into a structure. We define that structure is Context-Aware Matrix (CAM) in this article. However to make exact decision is too hard for some problems like low accuracy, overhead and bad context by attacker etc. Many researcher has been studying to solve these problems. Moreover, still it has weak point HCI using in safety. In this Article, we propose CAM making include best selecting Server in each area. As a result, moving users could be taken the best way.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.
Resumo:
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Resumo:
This paper describes the design and manufacture of a low-cost full scale pultrusion prototype equipment and discusses the production and obtained mechanical properties of polypropylene/glass (GF/PP) reinforced composite ba rs fabricated by using the prototype equipment. Three different GF/PP pre-impregnated ra w-materials, a commercial GF/PP comingled system from Vetrotex, a GF/PP powder coat ed towpreg [1-3] and, a GF/PP pre- consolidated tape (PCT) produced in our laboratorie s, were used in the production of composite bars that were subsequently submitted to mechanical testing in order to determine the relevant mechanical properties and quantify the consolidation quality. Samples of the different composite profiles were also observed und er SEM microscopy.
Resumo:
Cost-effective glass-reinforced thermoplastic matri x towpregs produced by a powder coating line were used to manufacture composite pipes by fi lament winding. A conventional 6 axes filament-winding equipment was adapted for processi ng such structures. The influence of the filament winding speed and mandrel temperature on t he composite final properties was studied in the present work. An optimized processin g window was established by comparing the composite theoretical expected mechanical prope rties with the experimentally obtained ones. The final properties determined on the produc ed pipes and structures and the technological changes introduced to the conventiona l filament-winding equipment will be presented and discussed. Besides the processing des cription and conditions, it will be presented the relationship between processing condi tions and mechanical properties.
Resumo:
This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole–Cole, Davidson–Cole, and Havriliak–Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.