4 resultados para Aristides, Marcianus, Saint, of Athens.
em Instituto Politécnico do Porto, Portugal
Resumo:
Francis Xavier’s Letters and Writings are eloquent narratives of a journey that absorbed the Saint’s entire life. His experiences and idiosyncrasies, values and categorizations are presented in a clear literate discourse. The missionary is rarely neutral in his opinions as he sustains his unmistakable and omnipresent objective: the conversion of peoples and the expansion of the Society of Jesus. Parallel with this objective, the reader is introduced to the individuals that Xavier meets or that he summons in his epistolary discourse. Letters and Writings presents us with a structured narrative peopled by all those who are subject to and objects of Xavier’s apostolic mission, by helpful and unhelpful persons of influence, and by leading and secondary actors. What is then the position of women, in the collective sense as well as in the individual sense, in the travels and goals that are the centre of Xavier’s Letters and Writings? What is the role of women, that secondary and suppressed term in the man/woman binomial, a dichotomy similar to the civilized/savage and European/native binomials that punctuate Xavier’s narratives and the historic context of his letters? Women are not absent from his writings, but it would be naïve to argue in favour of the author’s misogyny as much as of his “profound knowledge of the female heart”, to quote from Paulo Durão in "Women in the Letters of Saint Francis Xavier" (1952), the only paper on this subject published so far. We denote four great categories of women in the Letters and Writings: European Women, Converted Women, Women Who Profess another Religion, and Women as the Agents and Objects of Sin, the latter of which traverses the other three categories. They all depend on the context, circumstances and judgements of value that the author chooses to highlight and articulate.
Resumo:
A procedure for coupling mesoscale and CFD codes is presented, enabling the inclusion of realistic stratification flow regimes and boundary conditions in CFD simulations of relevance to site and resource assessment studies in complex terrain. Two distinct techniques are derived: (i) in the first one, boundary conditions are extracted from mesoscale results to produce time-varying CFD solutions; (ii) in the second case, a statistical treatment of mesoscale data leads to steady-state flow boundary conditions believed to be more representative than the idealised profiles which are current industry practice. Results are compared with measured data and traditional CFD approaches.
Resumo:
The main purpose of this work was the development of procedures for the simulation of atmospheric ows over complex terrain, using OpenFOAM. For this aim, tools and procedures were developed apart from this code for the preprocessing and data extraction, which were thereafter applied in the simulation of a real case. For the generation of the computational domain, a systematic method able to translate the terrain elevation model to a native OpenFOAM format (blockMeshDict) was developed. The outcome was a structured mesh, in which the user has the ability to de ne the number of control volumes and its dimensions. With this procedure, the di culties of case set up and the high computation computational e ort reported in literature associated to the use of snappyHexMesh, the OpenFOAM resource explored until then for the accomplishment of this task, were considered to be overwhelmed. Developed procedures for the generation of boundary conditions allowed for the automatic creation of idealized inlet vertical pro les, de nition of wall functions boundary conditions and the calculation of internal eld rst guesses for the iterative solution process, having as input experimental data supplied by the user. The applicability of the generated boundary conditions was limited to the simulation of turbulent, steady-state, incompressible and neutrally strati ed atmospheric ows, always recurring to RaNS (Reynolds-averaged Navier-Stokes) models. For the modelling of terrain roughness, the developed procedure allowed to the user the de nition of idealized conditions, like an uniform aerodynamic roughness length or making its value variable as a function of topography characteristic values, or the using of real site data, and it was complemented by the development of techniques for the visual inspection of generated roughness maps. The absence and the non inclusion of a forest canopy model limited the applicability of this procedure to low aerodynamic roughness lengths. The developed tools and procedures were then applied in the simulation of a neutrally strati ed atmospheric ow over the Askervein hill. In the performed simulations was evaluated the solution sensibility to di erent convection schemes, mesh dimensions, ground roughness and formulations of the k - ε and k - ω models. When compared to experimental data, calculated values showed a good agreement of speed-up in hill top and lee side, with a relative error of less than 10% at a height of 10 m above ground level. Turbulent kinetic energy was considered to be well simulated in the hill windward and hill top, and grossly predicted in the lee side, where a zone of ow separation was also identi ed. Despite the need of more work to evaluate the importance of the downstream recirculation zone in the quality of gathered results, the agreement between the calculated and experimental values and the OpenFOAM sensibility to the tested parameters were considered to be generally in line with the simulations presented in the reviewed bibliographic sources.