27 resultados para Aprendizaje automático (Inteligencia artificial)

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed - Distributed Belief Revision Test-bed - DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed ; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: No Centro Hospitalar de São João, EPE a partir de 2008, foi implementado o sistema semi-automático de reposição de stocks nivelados de medicamentos, Pyxis®, atualmente implementado em 16 serviços clínicos. Atendendo ao crescimento verificado na implementação deste sistema automatizado na instituição, este trabalho pretende dar a conhecer a realidade de preparação da medicação para reposição no sistema semi-automático Pyxis®, por avaliação do número de unidades de medicamentos repostos diariamente e por dia da semana. Material e Métodos: Desenvolveu-se um estudo longitudinal retrospetivo onde se analisou a totalidade de serviços com implementação Pyxis® através do registo diário de reposição dos diferentes Serviços Clínicos num período de 41 dias consecutivos. Numa segunda fase, os dados foram sintetizados sob a forma de tabelas em Microsoft Office Excel®, tendo posteriormente sido construídos os respetivos gráficos para análise. Resultados: Os resultados, representados graficamente, mostram que a segunda-feira é o dia da semana com maior número de reposições de medicamentos, sendo os serviços com maior número de reposições totais UCI Geral, UCI Neurocríticos, Cirurgia Cardiotorácica e UCIPU. Discussão / Conclusões: Os resultados obtidos permitiram verificar uma sobrecarga de referências de medicamentos e unidades repostas às segundas-feiras, atingindo, em muitos serviços, valores de unidades repostas duas vezes superior à média de reposições do serviço (por ex. UCI Neurocíticos). Contudo, apesar do reduzido período de análise, os dados parecem evidenciar que o facto de haver reposições ao domingo agiliza o processo de reposição dos Pyxis® às segundas-feiras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos tem-se verificado um acentuado aumento na utilização de dispositivos moveis a nível internacional, pelo que as aplicações desenvolvidas para este tipo específico de dispositivos, conhecidas por apps, tem vindo a ganhar uma enorme popularidade. São cada vez mais as empresas que procuram estar presentes nos mais diversos sistemas operativos móveis, com o objectivo de suportar e desenvolver o seu negócio, alargando o seu leque de possíveis consumidores. Neste sentido surgiram diversas ferramentas com a função de facilitar o desenvolvimento de aplicações móveis, denominadas frameworks multi-plataforma. Estas frameworks conduziram ao aparecimento de plataformas web, que permitem criar aplicações multi-plataforma sem ser obrigatório ter conhecimentos em programação. Assim, e a partir da análise de vários criadores online de aplicações móveis identificados e das diferentes estratégias de desenvolvimento de aplicações móveis existentes, foi proposta a implementação de uma plataforma web capaz de criar aplicações nativas Android e iOS, dois dos sistemas operativos mais utilizados na actualidade. Apos desenvolvida a plataforma web, designada MobileAppBuilder, foi avaliada a sua Qualidade e as aplicações criadas pela mesma, através do preenchimento de um questionário por parte de 10 indivíduos com formação em Engenharia Informática, resultando numa classificação geral de ”excelente”. De modo a analisar o desempenho das aplicações produzidas pela plataforma desenvolvida, foram realizados testes comparativos entre uma aplicação da MobileAppBuilder e duas homologas de dois dos criadores online estudados, nomeadamente Andromo e Como. Os resultados destes testes revelaram que a MobileAppBuilder gera aplicações menos pesadas, mais rápidas e mais eficientes em alguns aspetos, nomeadamente no arranque.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No panorama socioeconómico atual, a contenção de despesas e o corte no financiamento de serviços secundários consumidores de recursos conduzem à reformulação de processos e métodos das instituições públicas, que procuram manter a qualidade de vida dos seus cidadãos através de programas que se mostrem mais eficientes e económicos. O crescimento sustentado das tecnologias móveis, em conjunção com o aparecimento de novos paradigmas de interação pessoa-máquina com recurso a sensores e sistemas conscientes do contexto, criaram oportunidades de negócio na área do desenvolvimento de aplicações com vertente cívica para indivíduos e empresas, sensibilizando-os para a disponibilização de serviços orientados ao cidadão. Estas oportunidades de negócio incitaram a equipa do projeto a desenvolver uma plataforma de notificação de problemas urbanos baseada no seu sistema de informação geográfico para entidades municipais. O objetivo principal desta investigação foca a idealização, conceção e implementação de uma solução completa de notificação de problemas urbanos de caráter não urgente, distinta da concorrência pela facilidade com que os cidadãos são capazes de reportar situações que condicionam o seu dia-a-dia. Para alcançar esta distinção da restante oferta, foram realizados diversos estudos para determinar características inovadoras a implementar, assim como todas as funcionalidades base expectáveis neste tipo de sistemas. Esses estudos determinaram a implementação de técnicas de demarcação manual das zonas problemáticas e reconhecimento automático do tipo de problema reportado nas imagens, ambas desenvolvidas no âmbito deste projeto. Para a correta implementação dos módulos de demarcação e reconhecimento de imagem, foram feitos levantamentos do estado da arte destas áreas, fundamentando a escolha de métodos e tecnologias a integrar no projeto. Neste contexto, serão apresentadas em detalhe as várias fases que constituíram o processo de desenvolvimento da plataforma, desde a fase de estudo e comparação de ferramentas, metodologias, e técnicas para cada um dos conceitos abordados, passando pela proposta de um modelo de resolução, até à descrição pormenorizada dos algoritmos implementados. Por último, é realizada uma avaliação de desempenho ao par algoritmo/classificador desenvolvido, através da definição de métricas que estimam o sucesso ou insucesso do classificador de objetos. A avaliação é feita com base num conjunto de imagens de teste, recolhidas manualmente em plataformas públicas de notificação de problemas, confrontando os resultados obtidos pelo algoritmo com os resultados esperados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.