38 resultados para Approximate spelling
em Instituto Politécnico do Porto, Portugal
Resumo:
Consider the problem of deciding whether a set of n sporadic message streams meet deadlines on a Controller Area Network (CAN) bus for a specified priority assignment. It is assumed that message streams have implicit deadlines and no release jitter. An algorithm to solve this problem is well known but unfortunately it time complexity is non-polynomial. We present an algorithm with polynomial time-complexity for computing an upper bound on the response times. Clearly, if the upper bound on the response time does not exceed the deadline then all deadlines are met. The pessimism of our approach is proven: if the upper bound of the response time exceeds the deadline then the response time exceeds the deadline as well for a CAN network with half the speed.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Resumo:
Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do obtenção do grau de Mestre em Auditoria Auditoria, sob orientação de Adalmiro Álvaro Malheiro de Castro Andrade
Resumo:
Mestrado em Engenharia Química. Ramo Tecnologias de Protecção Ambiental.
Resumo:
Este relatório apresenta o trabalho realizado no âmbito da unidade curricular de Tese/Dissertação do Mestrado em Engenharia Electrotécnica e de Computadores - área de especialização de Telecomunicações. Pretende-se desenvolver um sistema distribuído de seguimento, no exterior, de plataformas móveis equipadas com receptores de baixo custo. O sistema deve, em tempo útil, realizar a aquisição, descodificação e tratamento dos dados emiti- dos pelo Global Navigation Satellite System (GNSS), das observações efectuadas pelo receptor e da informação proveniente do European Geostationary Navigation Overlay System (EGNOS). O objectivo é determinar, a partir deste conjunto de informação e para cada plataforma ligada, a posição em modo absoluto, as correcções diferenciais e, finalmente, a posição em modo diferencial. Optou-se por receber as correcções diferenciais de área alargada do EGNOS através da Internet, permitindo, assim, que receptores sem capacidade de receber directamente informação do EGNOS possam também usufruir desta fonte de informação complementar. As correcções diferenciais a aplicar às observações de cada receptor são geradas através do conceito de estacão de referência virtual - Virtual Reference Station (VRS) - a partir da posição aproximada do receptor e das correcções de área alargada provenientes do EGNOS. A determinação da posição em modo diferencial das plataformas móveis é efectuada segundo o conceito de Inverted Di®erential Global Navigation Satellite System (IDGNSS) e utilizando uma arquitectura do tipo Cliente-Servidor. Por último, os resultados, que são armazenados numa base de dados, são disponibilizados ao utilizador através de uma aplicação Web. O utilizador pode, assim, efectuar o seguimento de qualquer plataforma móvel ligada ao sistema a partir de qualquer dispositivo com navegador e acesso à Internet.
Resumo:
Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.
Resumo:
Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.
Resumo:
This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.
Resumo:
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.
Resumo:
The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.
Resumo:
We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.