4 resultados para Approximate equation

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of deciding whether a set of n sporadic message streams meet deadlines on a Controller Area Network (CAN) bus for a specified priority assignment. It is assumed that message streams have implicit deadlines and no release jitter. An algorithm to solve this problem is well known but unfortunately it time complexity is non-polynomial. We present an algorithm with polynomial time-complexity for computing an upper bound on the response times. Clearly, if the upper bound on the response time does not exceed the deadline then all deadlines are met. The pessimism of our approach is proven: if the upper bound of the response time exceeds the deadline then the response time exceeds the deadline as well for a CAN network with half the speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.