4 resultados para Application efficiency
em Instituto Politécnico do Porto, Portugal
Resumo:
The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
The main objective of this work was to develop an application capable of determining the diffusion times and diffusion coefficients of optical clearing agents and water inside a known type of muscle. Different types of chemical agents can also be used with the method implemented, such as medications or metabolic products. Since the diffusion times can be calculated, it is possible to describe the dehydration mechanism that occurs in the muscle. The calculation of the diffusion time of an optical clearing agent allows to characterize the refractive index matching mechanism of optical clearing. By using both the diffusion times and diffusion of water and clearing agents not only the optical clearing mechanisms are characterized, but also information about optical clearing effect duration and magnitude is obtained. Such information is crucial to plan a clinical intervention in cooperation with optical clearing. The experimental method and equations implemented in the developed application are described in throughout this document, demonstrating its effectiveness. The application was developed in MATLAB code, but the method was personalized so it better fits the application needs. This process significantly improved the processing efficiency, reduced the time to obtain he results, multiple validations prevents common errors and some extra functionalities were added such as saving application progress or export information in different formats. Tests were made using glucose measurements in muscle. Some of the data, for testing purposes, was also intentionally changed in order to obtain different simulations and results from the application. The entire project was validated by comparing the calculated results with the ones found in literature, which are also described in this document.
Resumo:
This article discusses the application of Information and Communication Technologies and strategies for best practices in order to capture and maintain faculty students' attention. It is based on a case study of ten years, using a complete information system. This system, in addition to be considered an ERP, to support the activities of academic management, also has a strong component of SRM that provides support to academic and administrative activities. It describes the extent to which the presented system facilitates the interaction and communication between members of the academic community, using the Internet, with services available on the Web complementing them with email, SMS and CTI. Through a perception, backed by empirical analysis and results of investigations, it demonstrates how this type of practice may raise the level of satisfaction of the community. In particular, it is possible to combat failure at school, avoid that students leave their course before its completion and also that they recommend them to potential students. In addition, such a strategy also allows strong economies in the management of the institution, increasing its value. As future work, we present the new phase of the project towards implementation of Business Intelligence to optimize the management process, making it proactive. The technological vision that guides new developments to a construction based on Web services and procedural languages is also presented.