4 resultados para Anti-wear coating
em Instituto Politécnico do Porto, Portugal
Resumo:
Micro-abrasion wear tests with ball-cratering configuration are widely used. Sources of variability are already studied by different authors and conditions for testing are parameterized by BS EN 1071-6: 2007 standard which refers silicon carbide as abrasive. However, the use of other abrasives is possible and allowed. In this work, ball-cratering wear tests were performed using four different abrasive particles of three dissimilar materials: diamond, alumina and silicon carbide. Tests were carried out under the same conditions on a steel plate provided with TiB2 hard coating. For each abrasive, five different test durations were used allowing understanding the initial wear phenomena. Composition and shape of abrasive particles were investigated by SEM and EDS. Scar areas were observed by optical and electronic microscopy in order to understand the wear effects caused by each of them. Scar geometry and grooves were analyzed and compared. Wear coefficient was calculated for each situation. It was observed that diamond particles produce well-defined and circular wear scars. Different silicon carbide particles presented dissimilar results as consequence of distinct particle shape and size distribution.
Resumo:
Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.
Resumo:
Ball rotating micro-abrasion tribometers are commonly used to carry out wear tests on thin hard coatings. In these tests, different kinds of abrasives were used, as alumina (Al2O3), silicon carbide (SiC) or diamond. In each kind of abrasive, several particle sizes can be used. Some studies were developed in order to evaluate the influence of the abrasive particle shape in the micro-abrasion process. Nevertheless, the particle size was not well correlated with the material removed amount and wear mechanisms. In this work, slurry of SiC abrasive in distilled water was used, with three different particles size. Initial surface topography was accessed by atomic force microscopy (AFM). Coating hardness measurements were performed with a micro-hardness tester. In order to evaluate the wear behaviour, a TiAlSiN thin hard film was used. The micro-abrasion tests were carried out with some different durations. The abrasive effect of the SiC particles was observed by scanning electron microscopy (SEM) both in the films (hard material) as in the substrate (soft material), after coating perforation. Wear grooves and removed material rate were compared and discussed.
Resumo:
The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.