4 resultados para Anti-LZP3-specific IgG

em Instituto Politécnico do Porto, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antibodies against gliadin are used to detect celiac disease (CD) in patients. An electrochemical immunosensor for the voltammetric detection of human anti-gliadin antibodies (AGA) IgA and AGA IgG in real serum samples is proposed. The transducer surface consists of screen-printed carbon electrodes modified with a carbon nanotube/gold nanoparticle hybrid system, which provides a very useful surface for the amplification of the immunological interactions. The immunosensing strategy is based on the immobilization of gliadin, the antigen for the autoantibodies of interest, onto the nanostructured surface. The antigen–antibody interaction is recorded using alkaline phosphatase labeled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions (3-IP/Ag+) was used as the substrate. The analytical signal is based on the anodic redissolution of the enzymatically generated silver by cyclic voltammetry. The electrochemical behavior of this immunosensor was carefully evaluated assessing aspects as sensitivity, non-specific binding and matrix effects, and repeatability and reproducibility. The results were supported with a commercial ELISA test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Celiac disease (CD) is a gluten-induced autoimmune enteropathy characterized by the presence of antibodies against gliadin (AGA) and anti-tissue transglutaminase (anti-tTG) antibodies. A disposable electrochemical dual immunosensor for the simultaneous detection of IgA and IgG type AGA and antitTG antibodies in real patient’s samples is presented. The proposed immunosensor is based on a dual screen-printed carbon electrode, with two working electrodes, nanostructured with a carbon–metal hybrid system that worked as the transducer surface. The immunosensing strategy consisted of the immobilization of gliadin and tTG (i.e. CD specific antigens) on the nanostructured electrode surface. The electrochemical detection of the human antibodies present in the assayed serum samples was carried out through the antigen–antibody interaction and recorded using alkaline phosphatase labelled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions was used as the substrate. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with commercial ELISA kits indicating that the developed sensor can be a good alternative to the traditional methods allowing a decentralization of the analyses towards a point-of-care strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.