2 resultados para Anthracene.

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology based on microwave-assisted extraction (MAE) and LC with fluorescence detection (FLD) was investigated for the efficient determination of 15 polycyclic aromatic hydrocarbons (PAHs) regarded as priority pollutants by the US Environmental Protection Agency and dibenzo(a,l)pyrene in atmospheric particulate samples. PAHs were successfully extracted from real outdoor particulate matter (PM) samples with recoveries ranging from 81.4±8.8 to 112.0±1.1%, for all the compounds except for naphthalene (62.3±18.0%) and anthracene (67.3±5.7%), under the optimum MAE conditions (30.0 mL of ACN for 20 min at 110ºC). No clean-up steps were necessary prior to LC analysis. LOQs ranging from 0.0054 ng/m3 for benzo( a)anthracene to 0.089 ng/m3 for naphthalene were reached. The validated MAE methodology was applied to the determination of PAHs from a set of real world PM samples collected in Oporto (north of Portugal). The sum of particulate-bound PAHs in outdoor PM ranged from 2.5 and 28 ng/m3.