6 resultados para Ammonium nitrate
em Instituto Politécnico do Porto, Portugal
Resumo:
A flow injection analysis (FIA) system comprising a tartrate- (TAT) selective electrode has been developed for determination of tartaric acid in wines. Several electrodes constructed for this purpose had a PVC membrane with a complex of quaternary ammonium and TAT as anion exchanger, a phenol derivative as additive, and a more or less polar mediator solvent. Characterization of the electrodes showed behavior was best for membranes with o-nitrophenyl octyl ether as solvent. On injection of 500 μL into a phosphate buffer carrier (pH = 3.1; ionic strength 10–2 mol/L) flowing at 3 mL/min, the slope was 58.06 ± 0.6 with a lower limit of linear range of 5.0 × 10–4 mol/L TAT and R2 = 0.9989. The interference of several species, e.g. chloride, bromide, iodide, nitrate, gallic acid, tannin, sucrose, glucose, fructose, acetate, and citrate, was evaluated in terms of potentiometric selectivity coefficients. The Hofmeister series was followed for inorganic species and the most interfering organic ion was citrate. When red and white wines were analyzed and the results compared with those from an independent method they were found to be accurate, with relative standard deviations below 5.0%.
Resumo:
Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.
Resumo:
This study reports the levels of nitrate and nitrite of 34 vegetable samples, including different varieties of cabbage, lettuce, spinaches, parsley and turnips, collected in several locations of an intensive agricultural area (Modivas, Vila do Conde, northern Portugal). Nitrate levels ranged between 54 and 2440 mg NO-3 kg-1, while nitrite levels ranged between 1.1 and 57 mg NO-2 kg-1. The maximum residue levels established for nitrate in spinach and lettuce samples were not exceeded. Nitrate and nitrite levels reported in the literature for the same type of samples are reviewed, as well as the contribution of vegetables to nitrate and nitrite dietary exposure of populations.
Resumo:
The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.
Resumo:
Nitrat e (NO3 - ) i s per vasi ve i n t he bi ospher e[ 1, 2]. Cont emporar y agri cult ural pr acti ces are a mong t he maj or ant hr opogeni c sources of r eacti ve nitrogen speci es, wher e nitrat ei s t he most abundant of t hese [ 2]. Excessi ve a mount s of r eacti ve nitrogen i n soil s and gr oundwat er ar e creati ng si gnifi cant t hr eat s t o hu man healt h and saf et y [ 3] as well as a host of undesirabl e environment al i mpact s [ 2]; it i s curr ently consi der ed t he second most r el evant environment al i ssue, aft er car bon di oxide e mi ssi ons. Nowadays, a mong t he most r el evant and pr omi si ng appr oaches t o r educe nitrat e concentrati on i n wat er, na mel y gr oundwat er, ar e denitrifi cati on- based pr ocesses [ 4]. Per meabl e r eacti ve barri ers ( PRB) have been pr oven eff ecti ve i n r educi ng vari ous cont ami nant s i n copi ous a mount s, parti cul arl y i n shall ow gr oundwat er [ 5]. However t he possi bl e added eff ecti veness of usi ng nanoparti cl es i n t hese structur es t o obt ai n nitrogen gas from nitrat es requires f urt her i nvesti gati on.
Resumo:
It is unquestionable that an effective decision concerning the usage of a certain environmental clean-up technology should be conveniently supported. Significant amount of scientific work focussing on the reduction of nitrate concentration in drinking water by both metallic iron and nanomaterials and their usage in permeable reactive barriers has been worldwide published over the last two decades. This work aims to present in a systematic review of the most relevant research done on the removal of nitrate from groundwater using nanosized iron based permeable reactive barriers. The research was based on scientific papers published between 2004 and June 2014. It was performed using 16 combinations of keywords in 34 databases, according to PRISMA statement guidelines. Independent reviewers validated the selection criteria. From the 4161 records filtered, 45 met the selection criteria and were selected to be included in this review. This study's outcomes show that the permeable reactive barriers are, indeed, a suitable technology for denitrification and with good performance record but the long-term impact of the use of nanosized zero valent iron in this remediation process, in both on the environment and on the human health, is far to be conveniently known. As a consequence, further work is required on this matter, so that nanosized iron based permeable reactive barriers for the removal of nitrate from drinking water can be genuinely considered an eco-efficient technology.