8 resultados para Aldina

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel approach to WLAN propagation models for use in indoor localization. The major goal of this work is to eliminate the need for in situ data collection to generate the Fingerprinting map, instead, it is generated by using analytical propagation models such as: COST Multi-Wall, COST 231 average wall and Motley- Keenan. As Location Estimation Algorithms kNN (K-Nearest Neighbour) and WkNN (Weighted K-Nearest Neighbour) were used to determine the accuracy of the proposed technique. This work is based on analytical and measurement tools to determine which path loss propagation models are better for location estimation applications, based on Receive Signal Strength Indicator (RSSI).This study presents different proposals for choosing the most appropriate values for the models parameters, like obstacles attenuation and coefficients. Some adjustments to these models, particularly to Motley-Keenan, considering the thickness of walls, are proposed. The best found solution is based on the adjusted Motley-Keenan and COST models that allows to obtain the propagation loss estimation for several environments.Results obtained from two testing scenarios showed the reliability of the adjustments, providing smaller errors in the measured values values in comparison with the predicted values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constrained nonlinear optimization problems are usually solved using penalty or barrier methods combined with unconstrained optimization methods. Another alternative used to solve constrained nonlinear optimization problems is the lters method. Filters method, introduced by Fletcher and Ley er in 2002, have been widely used in several areas of constrained nonlinear optimization. These methods treat optimization problem as bi-objective attempts to minimize the objective function and a continuous function that aggregates the constraint violation functions. Audet and Dennis have presented the rst lters method for derivative-free nonlinear programming, based on pattern search methods. Motivated by this work we have de- veloped a new direct search method, based on simplex methods, for general constrained optimization, that combines the features of the simplex method and lters method. This work presents a new variant of these methods which combines the lters method with other direct search methods and are proposed some alternatives to aggregate the constraint violation functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Nonlinear Optimization Penalty and Barrier Methods are normally used to solve Constrained Problems. There are several Penalty/Barrier Methods and they are used in several areas from Engineering to Economy, through Biology, Chemistry, Physics among others. In these areas it often appears Optimization Problems in which the involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. In this work some Penalty/Barrier functions are tested and compared, using in the internal process, Derivative-free, namely Direct Search, methods. This work is a part of a bigger project involving the development of an Application Programming Interface, that implements several Optimization Methods, to be used in applications that need to solve constrained and/or unconstrained Nonlinear Optimization Problems. Besides the use of it in applied mathematics research it is also to be used in engineering software packages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viva@Mat is a project developed by four Math teachers from the School of Industrial Studies and Management (ESEIG) that was born with the fundamental objective of engaging ESEIG students with different math backgrounds in Math challenging activities. Some of these activities were transformed into real palpable materials and others into small interactive ones, being the great majority of them proposed by ESEIG’ students themselves. This small project rapidly grew into something we didn’t expect – it did flow over the walls of our institution to the general involving community – specifically to pre-university schools through the Viva@Math Exhibits – Orange, Blue and Green (the fourth, the Purple one is still in development). Nowadays, Viva@Math Exhibits – the public face of the Project – are itinerant and have been travelling between several, and different institutions (pre-university schools, preparatory schools, libraries, among others), around ESEIG and IPP area of influence and having registered visitors/participants of all ages. In this article we will describe the Viva@Math Project, its different activities that are categorized in some “great groups” like Numerical Trivia, Logic Activities and Mental Calculation, Puzzles, Geometric Curiosities, Magic Tricks, among others, designed to challenge students to use the underlying logical-mathematical reasoning to any ordinary and everyday activity. We will give specific and concrete examples of some of the activities developed and, also, reproduce of the general stimulating feedback the Project receives from the enrolled “actors” (teachers, students and their relatives, institutions, among others). We feel that this Project has become a small “bridge” between the pre-university schools and Higher Education Institutions (HEI), in trying to shorten the “gap” between the institutions of different levels of education and bring them to work together.