3 resultados para Air Traffic controllers

em Instituto Politécnico do Porto, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the scientific evidence showing that arsenic (As), cadmium (Cd), and nickel (Ni) are human genotoxic carcinogens, the European Union (EU) recently set target values for metal concentration in ambient air (As: 6 ng/m3, Cd: 5 ng/m3, Ni: 20 ng/m3). The aim of our study was to determine the concentration levels of these trace elements in Porto Metropolitan Area (PMA) in order to assess whether compliance was occurring with these new EU air quality standards. Fine (PM2.5) and inhalable (PM10) air particles were collected from October 2011 to July 2012 at two different (urban and suburban) locations in PMA. Samples were analyzed for trace elements content by inductively coupled plasma–mass spectrometry (ICP-MS). The study focused on determination of differences in trace elements concentration between the two sites, and between PM2.5 and PM10, in order to gather information regarding emission sources. Except for chromium (Cr), the concentration of all trace elements was higher at the urban site. However, results for As, Cd, Ni, and lead (Pb) were well below the EU limit/target values (As: 1.49 ± 0.71 ng/m3; Cd: 1.67 ± 0.92 ng/m3; Ni: 3.43 ± 3.23 ng/m3; Pb: 17.1 ± 10.1 ng/m3) in the worst-case scenario. Arsenic, Cd, Ni, Pb, antimony (Sb), selenium (Se), vanadium (V), and zinc (Zn) were predominantly associated to PM2.5, indicating that anthropogenic sources such as industry and road traffic are the main source of these elements. High enrichment factors (EF > 100) were obtained for As, Cd, Pb, Sb, Se, and Zn, further confirming their anthropogenic origin.