99 resultados para Agent-based brokerage platform
em Instituto Politécnico do Porto, Portugal
Resumo:
Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.
Resumo:
Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents.
Resumo:
Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents.
Resumo:
This paper presents MASCEM - Multi-Agent Simulator for Electricity Markets improvement towards an enlarged model for Seller Agents coalitions. The simulator has been improved, both regarding its user interface and internal structure. The OOA, used as development platform, version was updated and the multi-agent model was adjusted for implementing and testing several negotiations regarding Seller agents’ coalitions. Seller coalitions are a very important subject regarding the increased relevance of Distributed Generation under liberalised electricity markets.
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
Group decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made just by one individual. The simulation of group decision making through a Multi-Agent System is a very interesting research topic. The purpose of this paper it to specify the actors involved in the simulation of a group decision, to present a model to the process of group formation and to describe the approach made to implement that model. In the group formation model it is considered the existence of incomplete and negative information, which was identified as crucial to make the simulation closer to the reality.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.