2 resultados para Adaptive solution step
em Instituto Politécnico do Porto, Portugal
Resumo:
Smartphones and other internet enabled devices are now common on our everyday life, thus unsurprisingly a current trend is to adapt desktop PC applications to execute on them. However, since most of these applications have quality of service (QoS) requirements, their execution on resource-constrained mobile devices presents several challenges. One solution to support more stringent applications is to offload some of the applications’ services to surrogate devices nearby. Therefore, in this paper, we propose an adaptable offloading mechanism which takes into account the QoS requirements of the application being executed (particularly its real-time requirements), whilst allowing offloading services to several surrogate nodes. We also present how the proposed computing model can be implemented in an Android environment
Resumo:
Teaching robotics to students at the beginning of their studies has become a huge challenge. Simulation environments can be an effective solution to that challenge where students can interact with simulated robots and have the first contact with robotic constraints. From our previous experience with simulation environments it was possible to observe that students with lower background knowledge in robotics where able to deal with a limited number of constraints, implement a simulated robotic platform and study several sensors. The question is: after this first phase what should be the best approach? Should the student start developing their own hardware? Hardware development is a very important part of an engineer's education but it can also be a difficult phase that could lead to discouragement and loss of motivation in some students. Considering the previous constraints and first year engineering students’ high abandonment rate it is important to develop teaching strategies to deal with this problem in a feasible way. The solution that we propose is the integration of a low-cost standard robotic platform WowWee Rovio as an intermediate solution between the simulation phase and the stage where the students can develop their own robots. This approach will allow the students to keep working in robotic areas such as: cooperative behaviour, perception, navigation and data fusion. The propose approach proved to be a motivation step not only for the students but also for the teachers. Students and teachers were able to reach an agreement between the level of demand imposed by the teachers and satisfaction/motivation of the students.