2 resultados para Accumulation curves

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of electricity demand in Brazil, the lack of the next major hydroelectric reservoirs implementation, and the growth of environmental concerns lead utilities to seek an improved system planning to meet these energy needs. The great diversity of economic, social, climatic, and cultural conditions in the country have been causing a more difficult planning of the power system. The work presented in this paper concerns the development of an algorithm that aims studying the influence of the issues mentioned in load curves. Focus is given to residential consumers. The consumption device with highest influence in the load curve is also identified. The methodology developed gains increasing importance in the system planning and operation, namely in the smart grids context.