10 resultados para AAA
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper studies musical opus from the point of view of three mathematical tools: entropy, pseudo phase plane (PPP), and multidimensional scaling (MDS). The experiments analyze ten sets of different musical styles. First, for each musical composition, the PPP is produced using the time series lags captured by the average mutual information. Second, to unravel hidden relationships between the musical styles the MDS technique is used. The MDS is calculated based on two alternative metrics obtained from the PPP, namely, the average mutual information and the fractal dimension. The results reveal significant differences in the musical styles, demonstrating the feasibility of the proposed strategy and motivating further developments towards a dynamical analysis of musical sounds.
Resumo:
We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local fractional wavelet transform is also presented.
Resumo:
We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Resumo:
The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.
Resumo:
We study the observability of linear and nonlinear fractional differential systems of order 0 < α < 1 by using the Mittag-Leffler matrix function and the application of Banach’s contraction mapping theorem. Several examples illustrate the concepts.
Resumo:
For integer-order systems, there are well-known practical rules for RL sketching. Nevertheless, these rules cannot be directly applied to fractional-order (FO) systems. Besides, the existing literature on this topic is scarce and exclusively focused on commensurate systems, usually expressed as the ratio of two noninteger polynomials. The practical rules derived for those do not apply to other symbolic expressions, namely, to transfer functions expressed as the ratio of FO zeros and poles. However, this is an important case as it is an extension of the classical integer-order problem usually addressed by control engineers. Extending the RL practical sketching rules to such FO systems will contribute to decrease the lack of intuition about the corresponding system dynamics. This paper generalises several RL practical sketching rules to transfer functions specified as the ratio of FO zeros and poles. The subject is presented in a didactic perspective, being the rules applied to several examples.
Resumo:
This paper discusses the fundamentals of negative probabilities and fractional calculus. The historical evolution and the main mathematical concepts are discussed, and several analogies between the two apparently unrelated topics are established. Based on the new conceptual perspective, some experiments are performed shading new light into possible future progress.
Resumo:
This paper studies the information content of the chromosomes of twenty-three species. Several statistics considering different number of bases for alphabet character encoding are derived. Based on the resulting histograms, word delimiters and character relative frequencies are identified. The knowledge of this data allows moving along each chromosome while evaluating the flow of characters and words. The resulting flux of information is captured by means of Shannon entropy. The results are explored in the perspective of power law relationships allowing a quantitative evaluation of the DNA of the species.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.