2 resultados para A1 noradrenergic neurons

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A acetilcolina (ACh) é o neurotransmissor mais importante no controlo da motilidade gastrointestinal. A libertação de ACh dos neurónios entéricos é regulada por receptores neuronais específicos (De Man et al., 2003). Estudos prévios demonstraram que a adenosina exerce um papel duplo na libertação de ACh dos neurónios entéricos através da activação dos receptores inibitórios A1 e facilitatórios A2A (Duarte-Araújo et al., 2004). O potencial terapêutico dos compostos relacionados com a adenosina no controlo da motilidade e da inflamação intestinal, levou-nos a investigar o papel dos receptores com baixa afinidade para a adenosina, A2B e A3, na libertação de acetilcolina induzida por estimulação eléctrica nos neurónios mioentéricos. Estudos de imunolocalização mostraram que os receptores A2B exibem um padrão de distribuição semelhante ao do marcador de células gliais (GFAP). No que respeita aos receptores A1 e A3, estes encontram-se distribuídos principalmente nos corpos celulares dos neurónios ganglionares mioentéricos, enquanto os receptores A2A estão localizados predominantemente nos terminais nervosos colinérgicos. Neste trabalho mostrou-se que a modulação da libertação de ACh-[3H] (usando os antagonistas selectivos DPCPX, ZM241385 e MRS1191) é balanceada através da activação tónica dos receptores inibitórios (A1) e facilitatórios (A2A e A3) pela adenosina endógena. O antagonista selectivo dos receptores A2B, PSB603, não foi capaz de modificar o efeito inibitório da NECA (análogo da adenosina com afinidade para receptores A2). O efeito facilitatório do agonista dos receptores A3, 2-Cl-IB MECA (1-10 nM), foi atenuado pelo MRS1191 e pelo ZM241385, os quais bloqueiam respectivamente os receptores A3 e A2A. Contrariamente à 2-Cl-IB MECA, a activação dos receptores A2A pelo CGS21680C, atenuou a facilitação da libertação de ACh induzida pela activação dos receptores nicotínicos numa situação em que a geração do potencial de acção neuronal foi bloqueada pela tetrodotoxina. A localização diferencial dos receptores excitatórios A3 e A2A ao longo dos neurónios mioentéricos explica porque razão a estimulação dos receptores A3 (com 2-Cl-IB MECA) localizados nos corpos celulares dos neurónios mioentéricos exerce um efeito sinérgico com os receptores facilitatórios A2A dos terminais nervosos no sentido de aumentarem a libertação de ACh. Os resultados apresentados consolidam e expandem a compreensão actual da distribuição e função dos receptores da adenosina no plexo mioentérico do íleo de rato, e devem ser tidos em consideração para a interpretação de dados relativos às implicações fisiopatológicas da adenosina nos transtornos da motilidade intestinal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pain transmission at the spinal cord is modulated by descending actions that arise from supraspinal areas which collectively form the endogenous pain control system. Two key areas involved of the endogenous pain control system have a circunventricular location, namely the periaqueductal grey (PAG) and the locus coeruleus (LC). The PAG plays a crucial role in descending pain modulation as it conveys the input from higher brain centers to the spinal cord. As to the LC, it is involved in descending pain inhibition by direct noradrenergic projections to the spinal cord. In the context of neurological defects, several diseases may affect the structure and function of the brain. Hydrocephalus is a congenital or acquired disease characterized by an enlargement of the ventricles which leads to a distortion of the adjacent tissues, including the PAG and LC. Usually, patients suffering from hydrocephalus present dysfunctions in learning and memory and also motor deficits. It remains to be evaluated if lesions of the periventricular brain areas involved in pain control during hydrocephalus may affect descending pain control and, herein, affect pain responses. The studies included in the present thesis used an experimental model of hydrocephalus (the rat injected in the cisterna magna with kaolin) to study descending modulation of pain, focusing on the two circumventricular regions referred above (the PAG and the LC). In order to evaluate the effects of kaolin injection into the cisterna magna, we measured the degree of ventricular dilatation in sections encompassing the PAG by standard cytoarquitectonic stanings (thionin staining). For the LC, immunodetection of the noradrenaline-synthetizing enzyme tyrosine hydroxylase (TH) was performed, due to the noradrenergic nature of the LC neurons. In general, rats with kaolin-induced hydrocephalus presented a higher dilatation of the 4th ventricle, along with a tendency to a higher area of the PAG. Due to the validated role of detection the c-fos protooncogene as a marker of neuronal activation, we also studied neuronal activation in the several subnuclei which compose the PAG, namely the dorsomedial, dorsolateral, lateral and ventrolateral (VLPAG) parts. A decrease in the numbers of neurons immunoreactive for Fos protein (the product of activation of the c-fos protooncogene) was detected in rats injected with kaolin, whereas the remaining PAG subnuclei did not present changes in Fos-immunoreactive nuclei. Increases in the levels of TH in the LC, namely at the rostral parts of the nucleus, were detected in hydrocephalic animals. The following pain-related parameters were measured, namely 1) pain behavioural responses in a validated pain inflammatory test (the formalin test) and 2) the nociceptive activation of spinal cord neurons. A decrease in behavioral responses was detected in rats with kaolin-induced hydrocephalus was detected, namely in the second phase of the test (inflammatory phase). This is the phase of the formalin test in which the motor behaviour is less important, which is important since a semi-quantitative analysis of the motor performance of rats injected with kaolin indicates that these animals may present some motor impairments. Collectively, the results of the behavioral studies indicate that rats with kaolin-induced hydrocephalus exhibit hypoalgesia. A decrease in Fos expression was detected at the superficial dorsal layers of the spinal cord in rats with kaolin-induced hydrocephalus, further indicating that hydrocephalus decreases nociceptive responses. It remains to be ascertained if this is due to alterations in the PAG and LC in the rats with kaolin-induced hydrocephalus, which may affect descending pain modulation. It remains to be evaluated what are the mechanisms underlying the increased pain inhibition at the spinal dorsal horn in the hydrocephalus rats. Regarding the VLPAG, the decrease in neuronal activity may impair descending modulation. Since the LC has higher levels of TH in rats with kaolininduced hydrocephalus, which also appears to increase the noradrenergic innervation in the spinal dorsal horn, it is possible that an increase in the release of noradrenaline at the spinal cord accounts for pain inhibition. Our studies also determine the need to study in detail patients with hydrocephalus namely in what concerns their thresholds to pain and to perform imaging studies focused on the structure and function of pain control areas in the brain.