3 resultados para 939
em Instituto Politécnico do Porto, Portugal
Resumo:
Specific marine macro algae species abundant at the Portuguese coast (Laminaria hyperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75–100 mg L−1. The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9–39.5, 18.6–32.0 and 32.3–50.4 mg g−1, respectively. Kinetic studies revealed that the metal uptake rate was rather fast, with 75% of the total amount occurring in the first 10 min for all algal species. Experimental data were well fitted by a pseudo-second order rate equation. The contribution of internal diffusion mechanism was significant only to the initial biosorption stage. Results indicate that all the studied macro algae species can provide an efficient and cost-effective technology for eliminating heavy metals from industrial effluents.
Resumo:
Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.