4 resultados para 380304 Neurocognitive Patterns and Neural Networks
em Instituto Politécnico do Porto, Portugal
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
Localization is a fundamental task in Cyber-Physical Systems (CPS), where data is tightly coupled with the environment and the location where it is generated. The research literature on localization has reached a critical mass, and several surveys have also emerged. This review paper contributes on the state-of-the-art with the proposal of a new and holistic taxonomy of the fundamental concepts of localization in CPS, based on a comprehensive analysis of previous research works and surveys. The main objective is to pave the way towards a deep understanding of the main localization techniques, and unify their descriptions. Furthermore, this review paper provides a complete overview on the most relevant localization and geolocation techniques. Also, we present the most important metrics for measuring the accuracy of localization approaches, which is meant to be the gap between the real location and its estimate. Finally, we present open issues and research challenges pertaining to localization. We believe that this review paper will represent an important and complete reference of localization techniques in CPS for researchers and practitioners and will provide them with an added value as compared to previous surveys.