3 resultados para 1506 Tourism
em Instituto Politécnico do Porto, Portugal
Resumo:
Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.
Resumo:
O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.
Resumo:
C3S2E '16 Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering