22 resultados para 090608 Renewable Power and Energy Systems Engineering (excl. Solar Cells)
em Instituto Politécnico do Porto, Portugal
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.
Resumo:
TiO2 nanorodswere prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electronmicroscopy images showthat the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimumphotoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods.
Resumo:
Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.
Resumo:
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.
Resumo:
Artificial intelligence techniques are being widely used to face the new reality and to provide solutions that can make power systems undergo all the changes while assuring high quality power. In this way, the agents that act in the power industry are gaining access to a generation of more intelligent applications, making use of a wide set of AI techniques. Knowledge-based systems and decision-support systems have been applied in the power and energy industry. This article is intended to offer an updated overview of the application of artificial intelligence in power systems. This article paper is organized in a way so that readers can easily understand the problems and the adequacy of the proposed solutions. Because of space constraints, this approach can be neither complete nor sufficiently deep to satisfy all readers’ needs. As this is amultidisciplinary area, able to attract both software and computer engineering and power system people, this article tries to give an insight into themost important concepts involved in these applications. Complementary material can be found in the reference list, providing deeper and more specific approaches.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
This paper proposes a PSO based approach to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The statistical failure and repair data of distribution components is the main basis of the proposed methodology that uses a fuzzyprobabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A Modified Discrete PSO optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.
Resumo:
Designing electric installation projects, demands not only academic knowledge, but also other types of knowledge not easily acquired through traditional instructional methodologies. A lot of additional empirical knowledge is missing and so the academic instruction must be completed with different kinds of knowledge, such as real-life practical examples and simulations. On the other hand, the practical knowledge detained by the most experienced designers is not formalized in such a way that is easily transmitted. In order to overcome these difficulties present in the engineers formation, we are developing an Intelligent Tutoring System (ITS), for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Com a crescente integração de energias renováveis variáveis nos sistemas elétricos de energia surgem novos desafios à maneira como se efetua a exploração dos mesmos, devido à dificuldade na previsão produção e na controlabilidade destas energias. Estes desafios são ainda maiores quando se analisa uma rede elétrica isolada de pequenas dimensões sem possibilidade de ser interligada a uma rede continental, por apresentar uma maior fragilidade e dai resultarem critérios de exploração muito mais apertados, de forma a garantir da melhor forma a segurança e estabilidade da rede. Consequentemente existe a necessidade de serem adotadas medidas que atenuem os impactos da variabilidade e tornem mais previsíveis as energias renováveis. É neste âmbito que surgem as tecnologias de armazenamento de energia elétrica. O presente documento apresenta um estudo aprofundado ao sistema eletroprodutor da ilha da Madeira e às suas especificidades, analisando a viabilidade técnica da introdução de baterias em larga escala no sistema. De forma a realizar esta análise, criou-se uma ferramenta de simulação em Matlab, que visou quantificar o impacto da introdução de baterias, quer ao nível da integração de energia eólica, quer ao nível da redução da produção térmica. Esta ferramenta permite ainda uma análise gráfica do diagrama de produção agregado diário, assim como a evolução de potência e energia na bateria.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
he expansion of Digital Television and the convergence between conventional broadcasting and television over IP contributed to the gradual increase of the number of available channels and on demand video content. Moreover, the dissemination of the use of mobile devices like laptops, smartphones and tablets on everyday activities resulted in a shift of the traditional television viewing paradigm from the couch to everywhere, anytime from any device. Although this new scenario enables a great improvement in viewing experiences, it also brings new challenges given the overload of information that the viewer faces. Recommendation systems stand out as a possible solution to help a watcher on the selection of the content that best fits his/her preferences. This paper describes a web based system that helps the user navigating on broadcasted and online television content by implementing recommendations based on collaborative and content based filtering. The algorithms developed estimate the similarity between items and users and predict the rating that a user would assign to a particular item (television program, movie, etc.). To enable interoperability between different systems, programs characteristics (title, genre, actors, etc.) are stored according to the TV-Anytime standard. The set of recommendations produced are presented through a Web Application that allows the user to interact with the system based on the obtained recommendations.