5 resultados para Åkesson, Susanne
em Instituto Politécnico do Porto, Portugal
Resumo:
Our society relies on energy for most of its activities. One application domain inciding heavily on the energy budget regards the energy consumption in residential and non-residential buildings. The ever increasing needs for energy, resulting from the industrialization of developing countries and from the limited scalability of the traditional technologies for energy production, raises both problems and opportunities. The problems are related to the devastating effects of the greenhouse gases produced by the burning of oil and gas for energy production, and from the dependence of whole countries on companies providing gas and oil. The opportunities are mostly technological, since novel markets are opening for both energy production via renewable sources, and for innovations that can rationalize energy usage. An enticing research effort can be the mixing of these two aspects, by leveraging on ICT technologies to rationalize energy production, acquisition, and consumption. The ENCOURAGE project aims to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable active participation in the future smart grid environment.The primary application domains targeted by the ENCOURAGE project are non-residential buildings (e.g.: campuses) and residential buildings (e.g.: neighborhoods). The goal of the project is to achieve 20% of energy savings through the improved interoperability between various types of energy generation, consumption and storage devices; interbuilding energy exchange; and systematic performance monitoring.
Resumo:
Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system’s processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based “task-splitting” scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.
Resumo:
Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.