4 resultados para (-)-noradrenaline

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As respostas pós-juncionais mediadas por adrenorreceptores β2 (ARβ2), responsáveis pelo relaxamento do músculo liso, na veia safena do cão, estão ausentes à nascença. Pelo contrário, no rato recém-nascido já se verifica a estimulação da adenilil ciclase pela activação dos ARβ2. Não existem ainda estudos no coelho recém-nascido. O principal objectivo deste trabalho é avaliar as respostas pós-juncionais mediadas pelos ARβ2 em coelhos recém-nascidos e jovens e relacionar essas respostas com a adrenalina produzida nas glândulas supra-renais. Traçaram-se curvas de dose-resposta à isoprenalina (agonista β) utilizando-se anéis de aorta montados em banho de órgãos isolados ligado a um transdutor de força isométrica. As catecolaminas das supra-renais foram quantificadas por RP-HPLC-ED. Em aortas pré-contraídas com fenilefrina (agonista α1), a isoprenalina causou relaxamento total apenas em coelhos recém-nascidos (n=10). O relaxamento máximo nos coelhos jovens foi de 21±4% (n=23). A potência da isoprenalina foi maior nos recém-nascidos (EC50=1.15×10-8±7.2×10-10 M, n=10) do que nos coelhos jovens (EC50=1.29×10-7 ±4.7×10-9 M, n=23). O relaxamento máximo com isoprenalina, em aortas pré-contraídas com prostaglandina F2α (PGF2α), no grupo de coelhos recém-nascidos foi de 95±3.6% (n=16). O relaxamento máximo nos coelhos jovens foi de 43.7±8.6% (n=9). Na pré-contracção com PGF2α a potência da isoprenalina registou-se maior nos recémnascidos (EC50=9.59×10-9±4.0×10-10 M, n=16) do que nos coelhos jovens (EC50=2.13×10- 8±3.8×10-9 M, n=9), estando concordante com os resultados da pré-contracção com fenilefrina. Nas supra-renais dos recém-nascidos, o conteúdo de noradrenalina foi de 586±128 nmol/mg e da adrenalina foi de 1915±356 nmol/mg (n=4) e nos coelhos jovens foi de 112±12 nmol/mg e de 3644±403 nmol/mg (n=6), respectivamente. As respostas mediadas por ARβ2 no coelho desenvolvem-se mais cedo do que no cão, pois já estão presentes no nascimento. Tal como no rato, no coelho a adrenalina é já a catecolamina em maior quantidade à nascença, enquanto no cão é vestigial. Há uma relação temporal entre a síntese da adrenalina, a única catecolamina biogénica com alta afinidade para os ARβ2 e a maturação das respostas pós-juncionais mediadas por esses receptores. Um protocolo para experiências futuras destinadas a testar esta hipótese, com base no knockdown da Feniletanolamina-N-metiltransferase por RNAi foi elaborado e incluído neste documento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pesticide exposure during brain development could represent an important risk factor for the onset of neurodegenerative diseases. Previous studies investigated the effect of permethrin (PERM) administered at 34 mg/kg, a dose close to the no observable adverse effect level (NOAEL) from post natal day (PND) 6 to PND 21 in rats. Despite the PERM dose did not elicited overt signs of toxicity (i.e. normal body weight gain curve), it was able to induce striatal neurodegeneration (dopamine and Nurr1 reduction, and lipid peroxidation increase). The present study was designed to characterize the cognitive deficits in the current animal model. When during late adulthood PERM treated rats were tested for spatial working memory performances in a T-maze-rewarded alternation task they took longer to choose for the correct arm in comparison to age matched controls. No differences between groups were found in anxiety-like state, locomotor activity, feeding behavior and spatial orientation task. Our findings showing a selective effect of PERM treatment on the T-maze task point to an involvement of frontal cortico-striatal circuitry rather than to a role for the hippocampus. The predominant disturbances concern the dopamine (DA) depletion in the striatum and, the serotonin (5-HT) and noradrenaline (NE) unbalance together with a hypometabolic state in the medial prefrontal cortex area. In the hippocampus, an increase of NE and a decrease of DA were observed in PERM treated rats as compared to controls. The concentration of the most representative marker for pyrethroid exposure (3-phenoxybenzoic acid) measured in the urine of rodents 12 h after the last treatment was 41.50 µ/L and it was completely eliminated after 96 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supported by U. Porto/Santander Totta (IJUP) (PP-IJUP2011-320)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pain transmission at the spinal cord is modulated by descending actions that arise from supraspinal areas which collectively form the endogenous pain control system. Two key areas involved of the endogenous pain control system have a circunventricular location, namely the periaqueductal grey (PAG) and the locus coeruleus (LC). The PAG plays a crucial role in descending pain modulation as it conveys the input from higher brain centers to the spinal cord. As to the LC, it is involved in descending pain inhibition by direct noradrenergic projections to the spinal cord. In the context of neurological defects, several diseases may affect the structure and function of the brain. Hydrocephalus is a congenital or acquired disease characterized by an enlargement of the ventricles which leads to a distortion of the adjacent tissues, including the PAG and LC. Usually, patients suffering from hydrocephalus present dysfunctions in learning and memory and also motor deficits. It remains to be evaluated if lesions of the periventricular brain areas involved in pain control during hydrocephalus may affect descending pain control and, herein, affect pain responses. The studies included in the present thesis used an experimental model of hydrocephalus (the rat injected in the cisterna magna with kaolin) to study descending modulation of pain, focusing on the two circumventricular regions referred above (the PAG and the LC). In order to evaluate the effects of kaolin injection into the cisterna magna, we measured the degree of ventricular dilatation in sections encompassing the PAG by standard cytoarquitectonic stanings (thionin staining). For the LC, immunodetection of the noradrenaline-synthetizing enzyme tyrosine hydroxylase (TH) was performed, due to the noradrenergic nature of the LC neurons. In general, rats with kaolin-induced hydrocephalus presented a higher dilatation of the 4th ventricle, along with a tendency to a higher area of the PAG. Due to the validated role of detection the c-fos protooncogene as a marker of neuronal activation, we also studied neuronal activation in the several subnuclei which compose the PAG, namely the dorsomedial, dorsolateral, lateral and ventrolateral (VLPAG) parts. A decrease in the numbers of neurons immunoreactive for Fos protein (the product of activation of the c-fos protooncogene) was detected in rats injected with kaolin, whereas the remaining PAG subnuclei did not present changes in Fos-immunoreactive nuclei. Increases in the levels of TH in the LC, namely at the rostral parts of the nucleus, were detected in hydrocephalic animals. The following pain-related parameters were measured, namely 1) pain behavioural responses in a validated pain inflammatory test (the formalin test) and 2) the nociceptive activation of spinal cord neurons. A decrease in behavioral responses was detected in rats with kaolin-induced hydrocephalus was detected, namely in the second phase of the test (inflammatory phase). This is the phase of the formalin test in which the motor behaviour is less important, which is important since a semi-quantitative analysis of the motor performance of rats injected with kaolin indicates that these animals may present some motor impairments. Collectively, the results of the behavioral studies indicate that rats with kaolin-induced hydrocephalus exhibit hypoalgesia. A decrease in Fos expression was detected at the superficial dorsal layers of the spinal cord in rats with kaolin-induced hydrocephalus, further indicating that hydrocephalus decreases nociceptive responses. It remains to be ascertained if this is due to alterations in the PAG and LC in the rats with kaolin-induced hydrocephalus, which may affect descending pain modulation. It remains to be evaluated what are the mechanisms underlying the increased pain inhibition at the spinal dorsal horn in the hydrocephalus rats. Regarding the VLPAG, the decrease in neuronal activity may impair descending modulation. Since the LC has higher levels of TH in rats with kaolininduced hydrocephalus, which also appears to increase the noradrenergic innervation in the spinal dorsal horn, it is possible that an increase in the release of noradrenaline at the spinal cord accounts for pain inhibition. Our studies also determine the need to study in detail patients with hydrocephalus namely in what concerns their thresholds to pain and to perform imaging studies focused on the structure and function of pain control areas in the brain.