7 resultados para "good" theories
em Instituto Politécnico do Porto, Portugal
Resumo:
Los congresos de medicina se destacan actualmente como uno de los eventos multilingües que se celebran con más frecuencia en el panorama internacional. Recurrir a los servicios de interpretación se revela como un hecho habitual entre los organizadores de estos encuentros, especialmente en determinados ámbitos nacionales. Por consiguiente, los congresos de medicina brindan grandes posibilidades laborales a los intérpretes de conferencias, sobre todo a aquellos cuya combinación lingüística es inglés-español, dado que el inglés se define, sin lugar a dudas, como la lengua por excelencia de la comunicación médica. No obstante, a pesar de esta demanda creciente en nuestra sociedad actual, los planteamientos académicos y profesionales siguen siendo, en gran medida, teóricos e intuitivos, fruto de experiencias personales, carentes en la mayoría de los casos de un respaldo empírico. Para corroborar o descartar ciertas presuposiciones establecidas a priori por estudiosos de la interpretación especializada, como pueden ser el uso de determinadas fuentes documentales y métodos de preparación, la evaluación de determinados parámetros de calidad o el nivel de especialización del intérprete, nos servimos de unas medidas de valoración retrospectivas en intérpretes profesionales especializados en congresos de medicina para verificar nuestro objetivo fundamental: en qué medida se alejan las teorías establecidas de la práctica profesional.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform where a task may request at most one of |R| shared resources. There are m1 processors of type-1 and m2 processors of type-2. Tasks may migrate only when requesting or releasing resources. We present a new algorithm, FF-3C-vpr, which offers a guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that only allows tasks to migrate when requesting or releasing a resource, then FF-3Cvpr also meets deadlines if given processors 4+6*ceil(|R|/min(m1,m2)) times as fast. As far as we know, it is the first result for resource sharing on heterogeneous platforms with provable performance.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee but for a stronger adversary.We conjecture that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast. We illustrate this with an example.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We consider a restricted case where the maximum utilization of any task on any processor in the system is no greater than one. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee for this restricted case but for a stronger adversary. We show that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast.
Resumo:
We present a 12(1 + 3R/(4m)) competitive algorithm for scheduling implicit-deadline sporadic tasks on a platform comprising m processors, where a task may request one of R shared resources.
Resumo:
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.