125 resultados para physically-based


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a framework for the support of mobile application with Quality of Service (QoS) requirements, such as voice or video, capable of supporting distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal isolation is an increasingly relevant con- cern in particular for ARINC-351 and virtualisation- based systems. Traditional approaches like the rate- based scheduling framework RBED do not take into account the impact of preemptions in terms of loss of working set in the acceleration hardware (e.g. caches). While some improvements have been suggested in the literature, they are overly heavy in the presence of small high-priority tasks such as interrupt service routines. Within this paper we propose an approach enabling adaptive assessment of this preemption delay in a tem- poral isolation framework with special consideration of capabilities and limitations of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing an efficient server-based real-time scheduling solution that supports dynamic task-level parallelism is now relevant to even the desktop and embedded domains and no longer only to the high performance computing market niche. This paper proposes a novel approach that combines the constantbandwidth server abstraction with a work-stealing load balancing scheme which, while ensuring isolation among tasks, enables a task to be executed on more than one processor at a given time instant.