181 resultados para multi-agent incremental negotiation scheme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All over the world, the liberalization of electricity markets, which follows different paradigms, has created new challenges for those involved in this sector. In order to respond to these challenges, electric power systems suffered a significant restructuring in its mode of operation and planning. This restructuring resulted in a considerable increase of the electric sector competitiveness. Particularly, the Ancillary Services (AS) market has been target of constant renovations in its operation mode as it is a targeted market for the trading of services, which have as main objective to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. In this way, with the increasing penetration of distributed energy resources including distributed generation, demand response, storage units and electric vehicles, it is essential to develop new smarter and hierarchical methods of operation of electric power systems. As these resources are mostly connected to the distribution network, it is important to consider the introduction of this kind of resources in AS delivery in order to achieve greater reliability and cost efficiency of electrical power systems operation. The main contribution of this work is the design and development of mechanisms and methodologies of AS market and for energy and AS joint market, considering different management entities of transmission and distribution networks. Several models developed in this work consider the most common AS in the liberalized market environment: Regulation Down; Regulation Up; Spinning Reserve and Non-Spinning Reserve. The presented models consider different rules and ways of operation, such as the division of market by network areas, which allows the congestion management of interconnections between areas; or the ancillary service cascading process, which allows the replacement of AS of superior quality by lower quality of AS, ensuring a better economic performance of the market. A major contribution of this work is the development an innovative methodology of market clearing process to be used in the energy and AS joint market, able to ensure viable and feasible solutions in markets, where there are technical constraints in the transmission network involving its division into areas or regions. The proposed method is based on the determination of Bialek topological factors and considers the contribution of the dispatch for all services of increase of generation (energy, Regulation Up, Spinning and Non-Spinning reserves) in network congestion. The use of Bialek factors in each iteration of the proposed methodology allows limiting the bids in the market while ensuring that the solution is feasible in any context of system operation. Another important contribution of this work is the model of the contribution of distributed energy resources in the ancillary services. In this way, a Virtual Power Player (VPP) is considered in order to aggregate, manage and interact with distributed energy resources. The VPP manages all the agents aggregated, being able to supply AS to the system operator, with the main purpose of participation in electricity market. In order to ensure their participation in the AS, the VPP should have a set of contracts with the agents that include a set of diversified and adapted rules to each kind of distributed resource. All methodologies developed and implemented in this work have been integrated into the MASCEM simulator, which is a simulator based on a multi-agent system that allows to study complex operation of electricity markets. In this way, the developed methodologies allow the simulator to cover more operation contexts of the present and future of the electricity market. In this way, this dissertation offers a huge contribution to the AS market simulation, based on models and mechanisms currently used in several real markets, as well as the introduction of innovative methodologies of market clearing process on the energy and AS joint market. This dissertation presents five case studies; each one consists of multiple scenarios. The first case study illustrates the application of AS market simulation considering several bids of market players. The energy and ancillary services joint market simulation is exposed in the second case study. In the third case study it is developed a comparison between the simulation of the joint market methodology, in which the player bids to the ancillary services is considered by network areas and a reference methodology. The fourth case study presents the simulation of joint market methodology based on Bialek topological distribution factors applied to transmission network with 7 buses managed by a TSO. The last case study presents a joint market model simulation which considers the aggregation of small players to a VPP, as well as complex contracts related to these entities. The case study comprises a distribution network with 33 buses managed by VPP, which comprises several kinds of distributed resources, such as photovoltaic, CHP, fuel cells, wind turbines, biomass, small hydro, municipal solid waste, demand response, and storage units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) surgiram com o objetivo de apoiar um conjunto de decisores no processo de tomada de decisão. Uma das abordagens mais comuns na literatura para a implementação dos SADG é a utilização de Sistemas Multi-Agente (SMA). Os SMA permitem refletir com maior transparência o contexto real, tanto na representação que cada agente faz do decisor que representa como no formato de comunicação utilizado. Com o crescimento das organizações, atualmente vive-se uma viragem no conceito de tomada de decisão. Cada vez mais, devido a questões como: o estilo de vida, os mercados globais e o tipo de tecnologias disponíveis, faz sentido falar de decisão ubíqua. Isto significa que o decisor deverá poder utilizar o sistema a partir de qualquer local, a qualquer altura e através dos mais variados tipos de dispositivos eletrónicos tais como tablets, smartphones, etc. Neste trabalho é proposto um novo modelo de argumentação, adaptado ao contexto da tomada de decisão ubíqua para ser utilizado por um SMA na resolução de problemas multi-critério. É assumido que cada agente poderá utilizar um estilo de comportamento que afeta o modo como esse agente interage com outros agentes em situações de conflito. Sendo assim, pretende-se estudar o impacto da utilização de estilos de comportamento ao longo do processo da tomada de decisão e perceber se os agentes modelados com estilos de comportamento conseguem atingir o consenso mais facilmente quando comparados com agentes que não apresentam nenhum estilo de comportamento. Pretende-se ainda estudar se o número de argumentos trocados entre os agentes é proporcional ao nível de consenso final após o processo de tomada de decisão. De forma a poder estudar as hipóteses de investigação desenvolveu-se um protótipo de um SADG, utilizando um SMA. Desenvolveu-se ainda uma framework de argumentação que foi adaptada ao protótipo desenvolvido. Os resultados obtidos permitiram validar as hipóteses definidas neste trabalho tendo-se concluído que os agentes modelados com estilos de comportamento conseguem na maioria das vezes atingir um consenso mais facilmente comparado com agentes que não apresentam nenhum estilo de comportamento e que o número de argumentos trocados entre os agentes durante o processo de tomada de decisão não é proporcional ao nível de consenso final.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets worldwide are complex and dynamic environments with very particular characteristics. These are the result of electricity markets’ restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Market players and regulators are very interested in predicting the market’s behaviour. Market players need to understand the market behaviour and operation in order to maximize their profits, while market regulators need to test new rules and detect market inefficiencies before they are implemented. The growth of usage of simulation tools was driven by the need for understanding those mechanisms and how the involved players' interactions affect the markets' outcomes. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Still, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This dissertation proposes the development and implementation of ontologies for semantic interoperability between multi-agent simulation platforms in the scope of electricity markets. The added value provided to these platforms is given by enabling them sharing their knowledge and market models with other agent societies, which provides the means for an actual improvement in current electricity markets studies and development. The proposed ontologies are implemented in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) and tested through the interaction between MASCEM agents and agents from other multi-agent based simulators. The implementation of the proposed ontologies has also required a complete restructuring of MASCEM’s architecture and multi-agent model, which is also presented in this dissertation. The results achieved in the case studies allow identifying the advantages of the novel architecture of MASCEM, and most importantly, the added value of using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from the various systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs’ management. The proposed methodology is implemented and tested in MASCEM – a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.