156 resultados para heterogeneous networks
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising a constant number (denoted by t) of distinct types of processors—such a platform is referred to as a t-type platform. We present two algorithms, LPGIM and LPGNM, each providing the following guarantee. For a given t-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet their deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then: (i) LPGIM succeeds in finding such an assignment where the same restriction on task migration applies (intra-migrative) but given a platform in which only one processor of each type is 1 + α × t-1/t times faster and (ii) LPGNM succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which every processor is 1 + α times faster. The parameter α is a property of the task set; it is the maximum of all the task utilizations that are no greater than one. To the best of our knowledge, for t-type heterogeneous multiprocessors: (i) for the problem of intra-migrative task assignment, no previous algorithm exists with a proven bound and hence our algorithm, LPGIM, is the first of its kind and (ii) for the problem of non-migrative task assignment, our algorithm, LPGNM, has superior performance compared to state-of-the-art.
Resumo:
Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
Resumo:
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.
Resumo:
Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.
Resumo:
As the wireless cellular market reaches competitive levels never seen before, network operators need to focus on maintaining Quality of Service (QoS) a main priority if they wish to attract new subscribers while keeping existing customers satisfied. Speech Quality as perceived by the end user is one major example of a characteristic in constant need of maintenance and improvement. It is in this topic that this Master Thesis project fits in. Making use of an intrusive method of speech quality evaluation, as a means to further study and characterize the performance of speech codecs in second-generation (2G) and third-generation (3G) technologies. Trying to find further correlation between codecs with similar bit rates, along with the exploration of certain transmission parameters which may aid in the assessment of speech quality. Due to some limitations concerning the audio analyzer equipment that was to be employed, a different system for recording the test samples was sought out. Although the new designed system is not standard, after extensive testing and optimization of the system's parameters, final results were found reliable and satisfactory. Tests include a set of high and low bit rate codecs for both 2G and 3G, where values were compared and analysed, leading to the outcome that 3G speech codecs perform better, under the approximately same conditions, when compared with 2G. Reinforcing the idea that 3G is, with no doubt, the best choice if the costumer looks for the best possible listening speech quality. Regarding the transmission parameters chosen for the experiment, the Receiver Quality (RxQual) and Received Energy per Chip to the Power Density Ratio (Ec/N0), these were subject to speech quality correlation tests. Final results of RxQual were compared to those of prior studies from different researchers and, are considered to be of important relevance. Leading to the confirmation of RxQual as a reliable indicator of speech quality. As for Ec/N0, it is not possible to state it as a speech quality indicator however, it shows clear thresholds for which the MOS values decrease significantly. The studied transmission parameters show that they can be used not only for network management purposes but, at the same time, give an expected idea to the communications engineer (or technician) of the end-to-end speech quality consequences. With the conclusion of the work new ideas for future studies come to mind. Considering that the fourth-generation (4G) cellular technologies are now beginning to take an important place in the global market, as the first all-IP network structure, it seems of great relevance that 4G speech quality should be subject of evaluation. Comparing it to 3G, not only in narrowband but also adding wideband scenarios with the most recent standard objective method of speech quality assessment, POLQA. Also, new data found on Ec/N0 tests, justifies further research studies with the intention of validating the assumptions made in this work.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
Most of distribution generation and smart grid research works are dedicated to the study of network operation parameters, reliability among others. However, many of this research works usually uses traditional test systems such as IEEE test systems. This work proposes a voltage magnitude study in presence of fault conditions considering the realistic specifications found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzyprobabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12 bus sub-transmission network.
Resumo:
This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
IEEE 802.11 is one of the most well-established and widely used standard for wireless LAN. Its Medium Access control (MAC) layer assumes that the devices adhere to the standard’s rules and timers to assure fair access and sharing of the medium. However, wireless cards driver flexibility and configurability make it possible for selfish misbehaving nodes to take advantages over the other well-behaving nodes. The existence of selfish nodes degrades the QoS for the other devices in the network and may increase their energy consumption. In this paper we propose a green solution for selfish misbehavior detection in IEEE 802.11-based wireless networks. The proposed scheme works in two phases: Global phase which detects whether the network contains selfish nodes or not, and Local phase which identifies which node or nodes within the network are selfish. Usually, the network must be frequently examined for selfish nodes during its operation since any node may act selfishly. Our solution is green in the sense that it saves the network resources as it avoids wasting the nodes energy by examining all the individual nodes of being selfish when it is not necessary. The proposed detection algorithm is evaluated using extensive OPNET simulations. The results show that the Global network metric clearly indicates the existence of a selfish node while the Local nodes metric successfully identified the selfish node(s). We also provide mathematical analysis for the selfish misbehaving and derived formulas for the successful channel access probability.