129 resultados para Multi-agent simulation and artificial snow optimization
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.
Resumo:
Os consumidores finais são vistos, no novo paradigma da operação das redes elétricas, como intervenientes ativos com capacidade para gerir os seus recursos energéticos, nomeadamente as cargas, as unidades de produção, os veículos elétricos e a participação em eventos de Demand Response. Tem sido evidente um aumento do consumo de energia, sendo que o setor residencial representa uma importante parte do consumo global dos países desenvolvidos. Para que a participação ativa dos consumidores seja possível, várias abordagens têm vindo a ser propostas, com ênfase nas Smart Grids e nas Microgrids. Diversos sistemas têm sido propostos e desenvolvidos com o intuito de tornar a operação dos sistemas elétricos mais flexível. Neste contexto, os sistemas de gestão de instalações domésticas apresentam-se como um elemento fulcral para a participação ativa dos consumidores na gestão energética, permitindo aos operadores de sistema coordenarem a produção mas também a procura. No entanto, é importante identificar as vantagens da implementação e uso de sistemas de gestão de energia elétrica para os consumidores finais. Nesta dissertação são propostas metodologias de apoio ao consumidor doméstico na gestão dos recursos energéticos existentes e a implementação das mesmas na plataforma de simulação de um sistema de gestão de energia desenvolvido para consumidores domésticos, o SCADA House Intelligent Management (SHIM). Para tal, foi desenvolvida uma interface que permite a simulação em laboratório do sistema de gestão desenvolvido. Adicionalmente, o SHIM foi incluído no simulador Multi-Agent Smart Grid Simulation Plataform (MASGriP) permitindo a simulação de cenários considerando diferentes agentes. Ao nível das metodologias desenvolvidas são propostos diferentes algoritmos de gestão dos recursos energéticos existentes numa habitação, considerando utilizadores com diferentes tipos de recursos (cargas; cargas e veículos elétricos; cargas, veículos elétricos e microgeração). Adicionalmente é proposto um método de gestão dinâmica das cargas para eventos de Demand Response de longa duração, considerando as características técnicas dos equipamentos. Nesta dissertação são apresentados cinco casos de estudos em que cada um deles tem diferentes cenários de simulação. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias propostas para o SHIM. Adicionalmente são apresentados na dissertação perfis reais dos vários recursos energéticos e de consumidores domésticos que são, posteriormente, utilizados para o desenvolvimento dos casos de estudo e aplicação das metodologias.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.
Resumo:
The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.