110 resultados para wireless mesh networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant number of process control and factory automation systems use PROFIBUS as the underlying fieldbus communication network. The process of properly setting up a PROFIBUS network is not a straightforward task. In fact, a number of network parameters must be set for guaranteeing the required levels of timeliness and dependability. Engineering PROFIBUS networks is even more subtle when the network includes various physical segments exhibiting heterogeneous specifications, such as bus speed or frame formats, just to mention a few. In this paper we provide underlying theory and a methodology to guarantee the proper operation of such type of heterogeneous PROFIBUS networks. We additionally show how the methodology can be applied to the practical case of PROFIBUS networks containing simultaneously DP (Decentralised Periphery) and PA (Process Automation) segments, two of the most used commercial-off-the-shelf (COTS) PROFIBUS solutions. The importance of the findings is however not limited to this case. The proposed methodology can be generalised to cover other heterogeneous infrastructures. Hybrid wired/wireless solutions are just an example for which an enormous eagerness exists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider the problem of scheduling sporadic message transmission requests with deadlines. For wired channels, this has been achieved successfully using the CAN bus. For wireless channels, researchers have recently proposed a similar solution; a collision-free medium access control (MAC) protocol that implements static-priority scheduling. Unfortunately no implementation has been reported, yet. We implement and evaluate it to find that the implementation indeed is collision-free and prioritized. This allows us to develop schedulability analysis for the implementation. We measure the response times of messages in our implementation and find that our new response-time analysis indeed offers an upper bound on the response times. This enables a new class of wireless real-time systems with timeliness guarantees for sporadic messages and it opens-up a new research area: schedulability analysis for wireless networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Body Area Network (WBAN) is the most convenient, cost-effective, accurate, and non-invasive technology for e-health monitoring. The performance of WBAN may be disturbed when coexisting with other wireless networks. Accordingly, this paper provides a comprehensive study and in-depth analysis of coexistence issues and interference mitigation solutions in WBAN technologies. A thorough survey of state-of-the art research in WBAN coexistence issues is conducted. The survey classified, discussed, and compared the studies according to the parameters used to analyze the coexistence problem. Solutions suggested by the studies are then classified according to the followed techniques and concomitant shortcomings are identified. Moreover, the coexistence problem in WBAN technologies is mathematically analyzed and formulas are derived for the probability of successful channel access for different wireless technologies with the coexistence of an interfering network. Finally, extensive simulations are conducted using OPNET with several real-life scenarios to evaluate the impact of coexistence interference on different WBAN technologies. In particular, three main WBAN wireless technologies are considered: IEEE 802.15.6, IEEE 802.15.4, and low-power WiFi. The mathematical analysis and the simulation results are discussed and the impact of interfering network on the different wireless technologies is compared and analyzed. The results show that an interfering network (e.g., standard WiFi) has an impact on the performance of WBAN and may disrupt its operation. In addition, using low-power WiFi for WBANs is investigated and proved to be a feasible option compared to other wireless technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, both scientific community and automotive industry enabled communications among vehicles in different kinds of scenarios proposing different vehicular architectures. Vehicular delay-tolerant networks (VDTNs) were proposed as a solution to overcome some of the issues found in other vehicular architectures, namely, in dispersed regions and emergency scenarios. Most of these issues arise from the unique characteristics of vehicular networks. Contrary to delay-tolerant networks (DTNs), VDTNs place the bundle layer under the network layer in order to simplify the layered architecture and enable communications in sparse regions characterized by long propagation delays, high error rates, and short contact durations. However, such characteristics turn contacts very important in order to exchange as much information as possible between nodes at every contact opportunity. One way to accomplish this goal is to enforce cooperation between network nodes. To promote cooperation among nodes, it is important that nodes share their own resources to deliver messages from others. This can be a very difficult task, if selfish nodes affect the performance of cooperative nodes. This paper studies the performance of a cooperative reputation system that detects, identify, and avoid communications with selfish nodes. Two scenarios were considered across all the experiments enforcing three different routing protocols (First Contact, Spray and Wait, and GeoSpray). For both scenarios, it was shown that reputation mechanisms that punish aggressively selfish nodes contribute to increase the overall network performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the wireless cellular market reaches competitive levels never seen before, network operators need to focus on maintaining Quality of Service (QoS) a main priority if they wish to attract new subscribers while keeping existing customers satisfied. Speech Quality as perceived by the end user is one major example of a characteristic in constant need of maintenance and improvement. It is in this topic that this Master Thesis project fits in. Making use of an intrusive method of speech quality evaluation, as a means to further study and characterize the performance of speech codecs in second-generation (2G) and third-generation (3G) technologies. Trying to find further correlation between codecs with similar bit rates, along with the exploration of certain transmission parameters which may aid in the assessment of speech quality. Due to some limitations concerning the audio analyzer equipment that was to be employed, a different system for recording the test samples was sought out. Although the new designed system is not standard, after extensive testing and optimization of the system's parameters, final results were found reliable and satisfactory. Tests include a set of high and low bit rate codecs for both 2G and 3G, where values were compared and analysed, leading to the outcome that 3G speech codecs perform better, under the approximately same conditions, when compared with 2G. Reinforcing the idea that 3G is, with no doubt, the best choice if the costumer looks for the best possible listening speech quality. Regarding the transmission parameters chosen for the experiment, the Receiver Quality (RxQual) and Received Energy per Chip to the Power Density Ratio (Ec/N0), these were subject to speech quality correlation tests. Final results of RxQual were compared to those of prior studies from different researchers and, are considered to be of important relevance. Leading to the confirmation of RxQual as a reliable indicator of speech quality. As for Ec/N0, it is not possible to state it as a speech quality indicator however, it shows clear thresholds for which the MOS values decrease significantly. The studied transmission parameters show that they can be used not only for network management purposes but, at the same time, give an expected idea to the communications engineer (or technician) of the end-to-end speech quality consequences. With the conclusion of the work new ideas for future studies come to mind. Considering that the fourth-generation (4G) cellular technologies are now beginning to take an important place in the global market, as the first all-IP network structure, it seems of great relevance that 4G speech quality should be subject of evaluation. Comparing it to 3G, not only in narrowband but also adding wideband scenarios with the most recent standard objective method of speech quality assessment, POLQA. Also, new data found on Ec/N0 tests, justifies further research studies with the intention of validating the assumptions made in this work.