193 resultados para SCENARIOS
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
Resumo:
Wireless Body Area Network (WBAN) is the most convenient, cost-effective, accurate, and non-invasive technology for e-health monitoring. The performance of WBAN may be disturbed when coexisting with other wireless networks. Accordingly, this paper provides a comprehensive study and in-depth analysis of coexistence issues and interference mitigation solutions in WBAN technologies. A thorough survey of state-of-the art research in WBAN coexistence issues is conducted. The survey classified, discussed, and compared the studies according to the parameters used to analyze the coexistence problem. Solutions suggested by the studies are then classified according to the followed techniques and concomitant shortcomings are identified. Moreover, the coexistence problem in WBAN technologies is mathematically analyzed and formulas are derived for the probability of successful channel access for different wireless technologies with the coexistence of an interfering network. Finally, extensive simulations are conducted using OPNET with several real-life scenarios to evaluate the impact of coexistence interference on different WBAN technologies. In particular, three main WBAN wireless technologies are considered: IEEE 802.15.6, IEEE 802.15.4, and low-power WiFi. The mathematical analysis and the simulation results are discussed and the impact of interfering network on the different wireless technologies is compared and analyzed. The results show that an interfering network (e.g., standard WiFi) has an impact on the performance of WBAN and may disrupt its operation. In addition, using low-power WiFi for WBANs is investigated and proved to be a feasible option compared to other wireless technologies.
Resumo:
In the last decade, both scientific community and automotive industry enabled communications among vehicles in different kinds of scenarios proposing different vehicular architectures. Vehicular delay-tolerant networks (VDTNs) were proposed as a solution to overcome some of the issues found in other vehicular architectures, namely, in dispersed regions and emergency scenarios. Most of these issues arise from the unique characteristics of vehicular networks. Contrary to delay-tolerant networks (DTNs), VDTNs place the bundle layer under the network layer in order to simplify the layered architecture and enable communications in sparse regions characterized by long propagation delays, high error rates, and short contact durations. However, such characteristics turn contacts very important in order to exchange as much information as possible between nodes at every contact opportunity. One way to accomplish this goal is to enforce cooperation between network nodes. To promote cooperation among nodes, it is important that nodes share their own resources to deliver messages from others. This can be a very difficult task, if selfish nodes affect the performance of cooperative nodes. This paper studies the performance of a cooperative reputation system that detects, identify, and avoid communications with selfish nodes. Two scenarios were considered across all the experiments enforcing three different routing protocols (First Contact, Spray and Wait, and GeoSpray). For both scenarios, it was shown that reputation mechanisms that punish aggressively selfish nodes contribute to increase the overall network performance.
Resumo:
Performance evaluation increasingly assumes a more important role in any organizational environment. In the transport area, the drivers are the company’s image and for this reason it is important to develop and increase their performance and commitment to the company goals. This evaluation can be used to motivate driver to improve their performance and to discover training needs. This work aims to create a performance appraisal evaluation model of the drivers based on the multi-criteria decision aid methodology. The MMASSI (Multicriteria Methodology to Support Selection of Information Systems) methodology was adapted by using a template supporting the evaluation according to the freight transportation company in study. The evaluation process involved all drivers (collaborators being evaluated), their supervisors and the company management. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos
Resumo:
Relatório de Estágio
Resumo:
A presente dissertação centrou-se no estudo técnico-económico de dois cenários futuros para a continuação de fornecimento de energia térmica a um complexo de piscinas existente na região do vale do Tâmega. Neste momento a central de cogeração existente excedeu a sua licença de utilização e necessita de ser substituída. Os dois cenários em estudo são a compra de uma nova caldeira, a gás natural, para suprir as necessidades térmicas da caldeira existente a fuelóleo, ou o uso de um sistema de cogeração compacto que poderá estar disponível numa empresa do grupo. No primeiro cenário o investimento envolvido é cerca de 456 640 € sem proveitos de outra ordem para além dos requisitos térmicos, mas no segundo cenário os resultados são bem diferentes, mesmo que tenha de ser realizado o investimento de 1 000 000 € na instalação. Para este cenário foi efetuado um levantamento da legislação nacional no que toca à cogeração, recolheram-se dados do edifício como: horas de funcionamento, número de utentes, consumos de energia elétrica, térmica, água, temperatura da água das piscinas, temperatura do ar da nave, assim como as principais características da instalação de cogeração compacta. Com esta informação realizou-se o balanço de massa e energia e criou-se um modelo da nova instalação em software de modelação processual (Aspen Plus® da AspenTech). Os rendimentos térmico e elétrico obtidos da nova central de cogeração compacta foram, respetivamente, de 38,1% e 39,8%, com uma percentagem de perdas de 12,5% o que determinou um rendimento global de 78%. A avaliação da poupança de energia primária para esta instalação de cogeração compacta foi de 19,6 % o que permitiu concluir que é de elevada eficiência. O modelo criado permitiu compreender as necessidades energéticas, determinar alguns custos associados ao processo e simular o funcionamento da unidade com diferentes temperaturas de ar ambiente (cenários de verão e inverno com temperaturas médias de 20ºC e 5ºC). Os resultados revelaram uma diminuição de 1,14 €/h no custo da electricidade e um aumento do consumo de gás natural de 62,47 €/h durante o período mais frio no inverno devido ao aumento das perdas provocadas pela diminuição da temperatura exterior. Com esta nova unidade de cogeração compacta a poupança total anual pode ser, em média, de 267 780 € admitindo um valor para a manutenção de 97 698 €/ano. Se assim for, o projeto apresenta um retorno do investimento ao fim de 5 anos, com um VAL de 1 030 430 € e uma taxa interna de rentabilidade (TIR) de 14% (positiva, se se considerar a taxa de atualização do investimento de 3% para 15 anos de vida). Apesar do custo inicial ser elevado, os parâmetros económicos mostram que o projeto tem viabilidade económica e dará lucro durante cerca de 9 anos.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.
Resumo:
As the wireless cellular market reaches competitive levels never seen before, network operators need to focus on maintaining Quality of Service (QoS) a main priority if they wish to attract new subscribers while keeping existing customers satisfied. Speech Quality as perceived by the end user is one major example of a characteristic in constant need of maintenance and improvement. It is in this topic that this Master Thesis project fits in. Making use of an intrusive method of speech quality evaluation, as a means to further study and characterize the performance of speech codecs in second-generation (2G) and third-generation (3G) technologies. Trying to find further correlation between codecs with similar bit rates, along with the exploration of certain transmission parameters which may aid in the assessment of speech quality. Due to some limitations concerning the audio analyzer equipment that was to be employed, a different system for recording the test samples was sought out. Although the new designed system is not standard, after extensive testing and optimization of the system's parameters, final results were found reliable and satisfactory. Tests include a set of high and low bit rate codecs for both 2G and 3G, where values were compared and analysed, leading to the outcome that 3G speech codecs perform better, under the approximately same conditions, when compared with 2G. Reinforcing the idea that 3G is, with no doubt, the best choice if the costumer looks for the best possible listening speech quality. Regarding the transmission parameters chosen for the experiment, the Receiver Quality (RxQual) and Received Energy per Chip to the Power Density Ratio (Ec/N0), these were subject to speech quality correlation tests. Final results of RxQual were compared to those of prior studies from different researchers and, are considered to be of important relevance. Leading to the confirmation of RxQual as a reliable indicator of speech quality. As for Ec/N0, it is not possible to state it as a speech quality indicator however, it shows clear thresholds for which the MOS values decrease significantly. The studied transmission parameters show that they can be used not only for network management purposes but, at the same time, give an expected idea to the communications engineer (or technician) of the end-to-end speech quality consequences. With the conclusion of the work new ideas for future studies come to mind. Considering that the fourth-generation (4G) cellular technologies are now beginning to take an important place in the global market, as the first all-IP network structure, it seems of great relevance that 4G speech quality should be subject of evaluation. Comparing it to 3G, not only in narrowband but also adding wideband scenarios with the most recent standard objective method of speech quality assessment, POLQA. Also, new data found on Ec/N0 tests, justifies further research studies with the intention of validating the assumptions made in this work.
Resumo:
Performance appraisal increasingly assumes a more important role in any organizational environment. In the trucking industry, drivers are the company's image and for this reason it is important to develop and increase their performance and commitment to the company's goals. This paper aims to create a performance appraisal model for trucking drivers, based on a multi-criteria decision aid methodology. The PROMETHEE and MMASSI methodologies were adapted using the criteria used for performance appraisal by the trucking company studied. The appraisal involved all the truck drivers, their supervisors and the company's Managing Director. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used. The results are to be used as a decision-making tool to allocate drivers to the domestic haul service.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.