143 resultados para Multi-Agent Model
Resumo:
This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.
Resumo:
Demands for functionality enhancements, cost reductions and power savings clearly suggest the introduction of multiand many-core platforms in real-time embedded systems. However, when compared to uni-core platforms, the manycores experience additional problems, namely the lack of scalable coherence mechanisms and the necessity to perform migrations. These problems have to be addressed before such systems can be considered for integration into the realtime embedded domain. We have devised several agreement protocols which solve some of the aforementioned issues. The protocols allow the applications to plan and organise their future executions both temporally and spatially (i.e. when and where the next job will be executed). Decisions can be driven by several factors, e.g. load balancing, energy savings and thermal issues. All presented protocols are analytically described, with the particular emphasis on their respective real-time behaviours and worst-case performance. The underlying assumptions are based on the multi-kernel model and the message-passing paradigm, which constitutes the communication between the interacting instances.
Resumo:
With advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems
Resumo:
No decorrer dos últimos anos, os agentes (inteligentes) de software foram empregues como um método para colmatar as dificuldades associadas com a gestão, partilha e reutilização de um crescente volume de informação, enquanto as ontologias foram utilizadas para modelar essa mesma informação num formato semanticamente explícito e rico. À medida que a popularidade da Web Semântica aumenta e cada vez informação é partilhada sob a forma de ontologias, o problema de integração desta informação amplifica-se. Em semelhante contexto, não é expectável que dois agentes que pretendam cooperar utilizem a mesma ontologia para descrever a sua conceptualização do mundo. Inclusive pode revelar-se necessário que agentes interajam sem terem conhecimento prévio das ontologias utilizadas pelos restantes, sendo necessário que as conciliem em tempo de execução num processo comummente designado por Mapeamento de Ontologias [1]. O processo de mapeamento de ontologias é normalmente oferecido como um serviço aos agentes de negócio, podendo ser requisitado sempre que seja necessário produzir um alinhamento. No entanto, tendo em conta que cada agente tem as suas próprias necessidades e objetivos, assim como a própria natureza subjetiva das ontologias que utilizam, é possível que tenham diferentes interesses relativamente ao processo de alinhamento e que, inclusive, recorram aos serviços de mapeamento que considerem mais convenientes [1]. Diferentes matchers podem produzir resultados distintos e até mesmo contraditórios, criando-se assim conflitos entre os agentes. É necessário que se proceda então a uma tentativa de resolução dos conflitos existentes através de um processo de negociação, de tal forma que os agentes possam chegar a um consenso relativamente às correspondências que devem ser utilizadas na tradução de mensagens a trocar. A resolução de conflitos é considerada uma métrica de grande importância no que diz respeito ao processo de negociação [2]: considera-se que existe uma maior confiança associada a um alinhamento quanto menor o número de conflitos por resolver no processo de negociação que o gerou. Desta forma, um alinhamento com um número elevado de conflitos por resolver apresenta uma confiança menor que o mesmo alinhamento associado a um número elevado de conflitos resolvidos. O processo de negociação para que dois ou mais agentes gerem e concordem com um alinhamento é denominado de Negociação de Mapeamentos de Ontologias. À data existem duas abordagens propostas na literatura: (i) baseadas em Argumentação (e.g. [3] [4]) e (ii) baseadas em Relaxamento [5] [6]. Cada uma das propostas expostas apresenta um número de vantagens e limitações. Foram propostas várias formas de combinação das duas técnicas [2], com o objetivo de beneficiar das vantagens oferecidas e colmatar as suas limitações. No entanto, à data, não são conhecidas experiências documentadas que possam provar tal afirmação e, como tal, não é possível atestar que tais combinações tragam, de facto, o benefício que pretendem. O trabalho aqui apresentado pretende providenciar tais experiências e verificar se a afirmação de melhorias em relação aos resultados das técnicas individuais se mantém. Com o objetivo de permitir a combinação e de colmatar as falhas identificadas, foi proposta uma nova abordagem baseada em Relaxamento, que é posteriormente combinada com as abordagens baseadas em Argumentação. Os seus resultados, juntamente com os da combinação, são aqui apresentados e discutidos, sendo possível identificar diferenças nos resultados gerados por combinações diferentes e possíveis contextos de utilização.
Resumo:
Modelação e simulação baseadas em agentes estão a ganhar cada vez mais importância e adeptos devido à sua flexibilidade e potencialidade em reproduzir comportamentos e estudar um sistema na perspetiva global ou das interações individuais. Neste trabalho, criou-se um sistema baseado em agentes e desenvolvido em Repast Simphony com o objectivo de analisar a difusão de um novo produto ou serviço através de uma rede de potenciais clientes, tentando compreender, assim, como ocorre e quanto tempo demora esta passagem de informação (inovação) com diversas topologias de rede, no contato direto entre pessoas. A simulação baseia-se no conceito da existencia de iniciadores, que são os primeiros consumidores a adotar um produto quando este chega ao mercado e os seguidores, que são os potenciais consumidores que, apesar de terem alguma predisposição para adotar um novo produto, normalmente só o fazem depois de terem sido sujeitos a algum tipo de influência. Com a aplicação criada, simularam-se diversas situações com a finalidade de obter e observar os resultados gerados a partir de definições iniciais diferentes. Com os resultados gerados pelas simulações foram criados gráficos representativos dos diversos cenários. A finalidade prática desta aplicação, poderá ser o seu uso em sala de aula para simulação de casos de estudo e utilização, em casos reais, como ferramenta de apoio à tomada de decisão, das empresas.
Resumo:
Personalised video can be achieved by inserting objects into a video play-out according to the viewer's profile. Content which has been authored and produced for general broadcast can take on additional commercial service features when personalised either for individual viewers or for groups of viewers participating in entertainment, training, gaming or informational activities. Although several scenarios and use-cases can be envisaged, we are focussed on the application of personalised product placement. Targeted advertising and product placement are currently garnering intense interest in the commercial networked media industries. Personalisation of product placement is a relevant and timely service for next generation online marketing and advertising and for many other revenue generating interactive services. This paper discusses the acquisition and insertion of media objects into a TV video play-out stream where the objects are determined by the profile of the viewer. The technology is based on MPEG-4 standards using object based video and MPEG-7 for metadata. No proprietary technology or protocol is proposed. To trade the objects into the video play-out, a Software-as-a-Service brokerage platform based on intelligent agent technology is adopted. Agencies, libraries and service providers are represented in a commercial negotiation to facilitate the contractual selection and usage of objects to be inserted into the video play-out.
Resumo:
The ability to solve conflicting beliefs is crucial for multi- agent systems where the information is dynamic, incomplete and dis- tributed over a group of autonomous agents. The proposed distributed belief revision approach consists of a distributed truth maintenance sy- stem and a set of autonomous belief revision methodologies. The agents have partial views and, frequently, hold disparate beliefs which are au- tomatically detected by system’s reason maintenance mechanism. The nature of these conflicts is dynamic and requires adequate methodolo- gies for conflict resolution. The two types of conflicting beliefs addressed in this paper are Context Dependent and Context Independent Conflicts which result, in the first case, from the assignment, by different agents, of opposite belief statuses to the same belief, and, in the latter case, from holding contradictory distinct beliefs. The belief revision methodology for solving Context Independent Con- flicts is, basically, a selection process based on the assessment of the cre- dibility of the opposing belief statuses. The belief revision methodology for solving Context Dependent Conflicts is, essentially, a search process for a consensual alternative based on a “next best” relaxation strategy.
Resumo:
Belief revision is a critical issue in real world DAI applications. A Multi-Agent System not only has to cope with the intrinsic incompleteness and the constant change of the available knowledge (as in the case of its stand alone counterparts), but also has to deal with possible conflicts between the agents’ perspectives. Each semi-autonomous agent, designed as a combination of a problem solver – assumption based truth maintenance system (ATMS), was enriched with improved capabilities: a distributed context management facility allowing the user to dynamically focus on the more pertinent contexts, and a distributed belief revision algorithm with two levels of consistency. This work contributions include: (i) a concise representation of the shared external facts; (ii) a simple and innovative methodology to achieve distributed context management; and (iii) a reduced inter-agent data exchange format. The different levels of consistency adopted were based on the relevance of the data under consideration: higher relevance data (detected inconsistencies) was granted global consistency while less relevant data (system facts) was assigned local consistency. These abilities are fully supported by the ATMS standard functionalities.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed - Distributed Belief Revision Test-bed - DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed ; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
Environmental management is a complex task. The amount and heterogeneity of the data needed for an environmental decision making tool is overwhelming without adequate database systems and innovative methodologies. As far as data management, data interaction and data processing is concerned we here propose the use of a Geographical Information System (GIS) whilst for the decision making we suggest a Multi-Agent System (MAS) architecture. With the adoption of a GIS we hope to provide a complementary coexistence between heterogeneous data sets, a correct data structure, a good storage capacity and a friendly user’s interface. By choosing a distributed architecture such as a Multi-Agent System, where each agent is a semi-autonomous Expert System with the necessary skills to cooperate with the others in order to solve a given task, we hope to ensure a dynamic problem decomposition and to achieve a better performance compared with standard monolithical architectures. Finally, and in view of the partial, imprecise, and ever changing character of information available for decision making, Belief Revision capabilities are added to the system. Our aim is to present and discuss an intelligent environmental management system capable of suggesting the more appropriate land-use actions based on the existing spatial and non-spatial constraints.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.
Resumo:
Os consumidores finais são vistos, no novo paradigma da operação das redes elétricas, como intervenientes ativos com capacidade para gerir os seus recursos energéticos, nomeadamente as cargas, as unidades de produção, os veículos elétricos e a participação em eventos de Demand Response. Tem sido evidente um aumento do consumo de energia, sendo que o setor residencial representa uma importante parte do consumo global dos países desenvolvidos. Para que a participação ativa dos consumidores seja possível, várias abordagens têm vindo a ser propostas, com ênfase nas Smart Grids e nas Microgrids. Diversos sistemas têm sido propostos e desenvolvidos com o intuito de tornar a operação dos sistemas elétricos mais flexível. Neste contexto, os sistemas de gestão de instalações domésticas apresentam-se como um elemento fulcral para a participação ativa dos consumidores na gestão energética, permitindo aos operadores de sistema coordenarem a produção mas também a procura. No entanto, é importante identificar as vantagens da implementação e uso de sistemas de gestão de energia elétrica para os consumidores finais. Nesta dissertação são propostas metodologias de apoio ao consumidor doméstico na gestão dos recursos energéticos existentes e a implementação das mesmas na plataforma de simulação de um sistema de gestão de energia desenvolvido para consumidores domésticos, o SCADA House Intelligent Management (SHIM). Para tal, foi desenvolvida uma interface que permite a simulação em laboratório do sistema de gestão desenvolvido. Adicionalmente, o SHIM foi incluído no simulador Multi-Agent Smart Grid Simulation Plataform (MASGriP) permitindo a simulação de cenários considerando diferentes agentes. Ao nível das metodologias desenvolvidas são propostos diferentes algoritmos de gestão dos recursos energéticos existentes numa habitação, considerando utilizadores com diferentes tipos de recursos (cargas; cargas e veículos elétricos; cargas, veículos elétricos e microgeração). Adicionalmente é proposto um método de gestão dinâmica das cargas para eventos de Demand Response de longa duração, considerando as características técnicas dos equipamentos. Nesta dissertação são apresentados cinco casos de estudos em que cada um deles tem diferentes cenários de simulação. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias propostas para o SHIM. Adicionalmente são apresentados na dissertação perfis reais dos vários recursos energéticos e de consumidores domésticos que são, posteriormente, utilizados para o desenvolvimento dos casos de estudo e aplicação das metodologias.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.