218 resultados para drivers scheduling problem
Resumo:
A ESTSP-IPP implementou em 2008-2009 um novo modelo pedagógico, o PBL, em três licenciaturas. Este modelo tem sido considerado capaz de promover a aquisição de conhecimentos mas também o desenvolvimento de competências transversais valorizadas no mercado de trabalho; orienta-se em torno de problemas significativos da realidade profissional, trabalhados segundo a metodologia dos sete passos, destacando-se a aprendizagem através de pesquisa individual e trabalho de grupo; e visa ainda desenvolver processos cognitivos e metacognitivos como levantar hipóteses, comparar, analisar, interpretar e avaliar. Neste artigo, caracterizamos brevemente o modelo e respectivas implicações, justificando o interesse em investigar as repercussões da sua implementação.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
This chapter presents some of the issues with holonic manufacturing systems. It starts by presenting the current manufacturing scenario and trends and then provides some background information on the holonic concept and its application to manufacturing. The current limitations and future trends of manufacturing suggest more autonomous and distributed organisations for manufacturing systems; holonic manufacturing systems are proposed as a way to achieve such autonomy and decentralisation. After a brief literature survey a specific research work is presented to handle scheduling in holonic manufacturing systems. This work is based on task and resource holons that cooperate with each other based on a variant of the contract net protocol that allow the propagation of constraints between operations in the execution plan. The chapter ends by presenting some challenges and future opportunities of research.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
A operação dos Mercados de Energia Eléctrica passa, actualmente, por uma profunda reestruturação, com o principal foco nas transacções do sistema de transmissão entre os diferentes agentes. Tendo isso em conta, o serviço de transmissão neste novo esquema de funcionamento do Mercado de Energia Eléctrica deve ser provido de máxima eficiência económica, atendendo sempre às restrições de segurança do sistema. Com esta reorganização do sector eléctrico da última década surgiu também a necessidade de rever os modelos tradicionais de optimização económica do Sistema Eléctrico de Energia, como por exemplo o despacho e prédespacho (unit commitment). A reestruturação e liberalização dos mercados de energia eléctrica trouxeram novas restrições a alguns dos problemas tradicionais associados aos Sistemas Eléctricos de Energia. Um desses problemas é o Escalonamento da Produção de Energia Eléctrica, que no contexto actual, implica quase sempre negociação entre os diferentes agentes do mercado e consequentemente reescalonamento. A maioria dos métodos usados para a resolução do problema não permitem reformular o prédespacho, algo para que a Programação Lógica por Restrições é extremamente adequada. O trabalho desenvolvido nesta dissertação visa criar uma aplicação computacional com base na Programação Lógica por Restrições, através da plataforma ECLiPSe, para resolver o problema do Escalonamento da Produção de Energia Eléctrica dos grupos térmicos, demonstrando assim a versatilidade e flexibilidade deste tipo de programação aplicada a problema combinatoriais deste género.