92 resultados para agent based modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of systems is considered an obstacle to the progress of the IT industry. Autonomic computing is presented as the alternative to cope with the growing complexity. It is a holistic approach, in which the systems are able to configure, heal, optimize, and protect by themselves. Web-based applications are an example of systems where the complexity is high. The number of components, their interoperability, and workload variations are factors that may lead to performance failures or unavailability scenarios. The occurrence of these scenarios affects the revenue and reputation of businesses that rely on these types of applications. In this article, we present a self-healing framework for Web-based applications (SHõWA). SHõWA is composed by several modules, which monitor the application, analyze the data to detect and pinpoint anomalies, and execute recovery actions autonomously. The monitoring is done by a small aspect-oriented programming agent. This agent does not require changes to the application source code and includes adaptive and selective algorithms to regulate the level of monitoring. The anomalies are detected and pinpointed by means of statistical correlation. The data analysis detects changes in the server response time and analyzes if those changes are correlated with the workload or are due to a performance anomaly. In the presence of per- formance anomalies, the data analysis pinpoints the anomaly. Upon the pinpointing of anomalies, SHõWA executes a recovery procedure. We also present a study about the detection and localization of anomalies, the accuracy of the data analysis, and the performance impact induced by SHõWA. Two benchmarking applications, exercised through dynamic workloads, and different types of anomaly were considered in the study. The results reveal that (1) the capacity of SHõWA to detect and pinpoint anomalies while the number of end users affected is low; (2) SHõWA was able to detect anomalies without raising any false alarm; and (3) SHõWA does not induce a significant performance overhead (throughput was affected in less than 1%, and the response time delay was no more than 2 milliseconds).