111 resultados para Distributed fiber optic sensors
Resumo:
Disaster management is one of the most relevant application fields of wireless sensor networks. In this application, the role of the sensor network usually consists of obtaining a representation or a model of a physical phenomenon spreading through the affected area. In this work we focus on forest firefighting operations, proposing three fully distributed ways for approximating the actual shape of the fire. In the simplest approach, a circular burnt area is assumed around each node that has detected the fire and the union of these circles gives the overall fire’s shape. However, as this approach makes an intensive use of the wireless sensor network resources, we have proposed to incorporate two in-network aggregation techniques, which do not require considering the complete set of fire detections. The first technique models the fire by means of a complex shape composed of multiple convex hulls representing different burning areas, while the second technique uses a set of arbitrary polygons. Performance evaluation of realistic fire models on computer simulations reveals that the method based on arbitrary polygons obtains an improvement of 20% in terms of accuracy of the fire shape approximation, reducing the overhead in-network resources to 10% in the best case.
Resumo:
In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
Resumo:
A new biomimetic sensor for leucomalachite green host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted in methacrylic acid or acrylamido-2-methyl-1-propanesulfonic acid-based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and trapped in poly(vinyl chloride). The potentiometric sensors exhibited a near-Nernstian response in steady state evaluations, with slopes and detection limits ranging from 45.8 to 81.2 mV and 0.28 to 1.01 , respectively. They were independent from the pH of test solutions within 3 to 5. Good selectivity was observed towards drugs that may contaminate water near fish cultures, such as oxycycline, doxycycline, enrofloxacin, trimethoprim, creatinine, chloramphenicol, and dopamine. The sensors were successfully applied to field monitoring of leucomalachite green in river samples. The method offered the advantages of simplicity, accuracy, applicability to colored and turbid samples, and automation feasibility.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.
Resumo:
A new man-tailored biomimetic sensor for Chlorpromazine host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted within methacrylic acid, 2-vinyl pyridine and 2-acrylamido-2-methyl-1-propanesulfonic acid based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. Slopes and detection limits ranged 51–67 mV/decade and 0.46–3.9 μg/mL, respectively, in steady state conditions. Sensors were independent from the pH of test solutions within 2.0–5.5. Good selectivity was observed towards oxytetracycline, doxytetracycline, ciprofloxacin, enrofloxacin, nalidixic acid, sulfadiazine, trimethoprim, glycine, hydroxylamine, cysteine and creatinine. Analytical features in flowing media were evaluated on a double-channel manifold, with a carrier solution of 5.0 × 10−2 mol/L phosphate buffer. Near-Nernstian response was observed over the concentration range 1.0 × 10−4 to 1.0 × 10−2 mol/L. Average slopes were about 48 mV/decade. The sensors were successfully applied to field monitoring of CPZ in fish samples, offering the advantages of simplicity, accuracy, automation feasibility and applicability to complex samples.
Resumo:
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μg mL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μg mL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products.
Resumo:
11th IEEE World Conference on Factory Communication Systems (WFCS 2015). 27 to 29, May, 2015, TII-SS-2: Scheduling and Performance Analysis. Palma de Mallorca, Spain.
Resumo:
III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013
Resumo:
Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013
Resumo:
International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2015). 7 to 9, Apr, 2015. Singapure, Singapore.
Resumo:
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.
Resumo:
IEEE Robótica 2007 - 7th Conference on Mobile Robots and Competitions, Paderne, Portugal 2007
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.
Resumo:
In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic that finds a feasible partitioning and priority assignment for distributed applications based on the linear transactional model. DOPA partitions the tasks and messages in the distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm known as Audsley’s algorithm, to find the priorities for that partition. The experimental results show how the use of the OPA algorithm increases in average the number of schedulable tasks and messages in a distributed system when compared to the use of Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these results to the assignment of Parallel/Distributed applications and present a second heuristic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction transformation algorithm introduced in [1].
Resumo:
XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2015), III Workshop de Comunicação em Sistemas Embarcados Críticos. Vitória, Brasil.