99 resultados para Agent-based brokerage platform
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
In a highly competitive market companies know that having quality products or provide good services is not enough to keep customers "faithful". Currently, quality of products/services, location and price are fundamental aspects customers expect to get on every purchase, so they look for ways to distinguish companies. This can happen either in a strictly materialistic way or by evaluation of intangible metrics such as having his opinion appreciated or being part of a selected group of "premium" customers. Therefore, companies must find ways to value and reward its customers in order to keep them "faithful" to their products or services. Loyalty systems are one means to achieve this goal, however, due to its nature and how they are implemented, often companies end up having low acceptance, without achieving intended objectives. In an era of technological revolution, where global average adoption of smartphones and tablets is 74% and 40% [Our Mobile Planet, 2014], the opportunity to reinvent loyalty systems reappears. Throughout this thesis a new tool, relying on the latest technologies and aiming to fulfill this market opportunity, will be presented. The main idea is to use ancient loyalty concepts, such as stamps or pointscards, and transforms them into digital cards, to be used in digital wallets, introducing an innovative technology component based on Apple's Passbook technology. The main goal is to create a platform for managing the card’s life cycle, allowing anyone to create, edit, distribute and analyze the data, and also create a new communication channel with customers, improving the customer-‐supplier relationship and enhancing the mobile-‐marketing.
Resumo:
20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), 22 to 26, Jun, 2015, Madrid, Spain.
Resumo:
Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.
Resumo:
The complexity of systems is considered an obstacle to the progress of the IT industry. Autonomic computing is presented as the alternative to cope with the growing complexity. It is a holistic approach, in which the systems are able to configure, heal, optimize, and protect by themselves. Web-based applications are an example of systems where the complexity is high. The number of components, their interoperability, and workload variations are factors that may lead to performance failures or unavailability scenarios. The occurrence of these scenarios affects the revenue and reputation of businesses that rely on these types of applications. In this article, we present a self-healing framework for Web-based applications (SHõWA). SHõWA is composed by several modules, which monitor the application, analyze the data to detect and pinpoint anomalies, and execute recovery actions autonomously. The monitoring is done by a small aspect-oriented programming agent. This agent does not require changes to the application source code and includes adaptive and selective algorithms to regulate the level of monitoring. The anomalies are detected and pinpointed by means of statistical correlation. The data analysis detects changes in the server response time and analyzes if those changes are correlated with the workload or are due to a performance anomaly. In the presence of per- formance anomalies, the data analysis pinpoints the anomaly. Upon the pinpointing of anomalies, SHõWA executes a recovery procedure. We also present a study about the detection and localization of anomalies, the accuracy of the data analysis, and the performance impact induced by SHõWA. Two benchmarking applications, exercised through dynamic workloads, and different types of anomaly were considered in the study. The results reveal that (1) the capacity of SHõWA to detect and pinpoint anomalies while the number of end users affected is low; (2) SHõWA was able to detect anomalies without raising any false alarm; and (3) SHõWA does not induce a significant performance overhead (throughput was affected in less than 1%, and the response time delay was no more than 2 milliseconds).
Resumo:
Post-MAPS is a web platform that collects gastroenterological exam data from several european hospital centers, to be used in future clinical studies and was developed in partnership with experts from the gastroenterological area and information technology (IT) technicians. However, although functional, this platform has some issues that are crucial for its functioning, and can render user interaction unpleasant and exhaustive. Accordingly, we proposed the development of a new web platform, in which we aimed for an improvement in terms of usability, data uni cation and interoperability. Therefore, it was necessary to identify and study different ways of acquiring clinical data and review some of the existing clinical databases in order to understand how they work and what type of data they store, as well as their impact and contribution to clinical knowledge. Closely linked to the data model is the ability to share data with other systems, so, we also studied the concept of interoperability and analyzed some of the most widely used international standards, such as DICOM, HL7 and openEHR. As one of the primary objectives of this project was to achieve a better level of usability, practices related to Human Computer-Interaction, such as requirement analysis, creation of conceptual models, prototyping, and evaluation were also studied. Before we began the development, we conducted an analysis of the previous platform, from a functional point of view, which allowed us to gather not only a list of architectural and interface issues, but also a list of improvement opportunities. It was also performed a small preliminary study in order to evaluate the platform's usability, where we were able to realize that perceived usability is different between users, and that, in some aspects, varies according to their location, age and years of experience. Based on the information gathered during the platform's analysis and in the conclusions of the preliminary study, a new platform was developed, prepared for all potential users, from the inexperienced to the most comfortable with technology. It presents major improvements in terms of usability, also providing several new features that simplify the users' work, improving their interaction with the system, making their experience more enjoyable.