96 resultados para metal organic framework (MOF)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A control framework enabling the automated maneuvering of a Remotely Operate Vehicle (ROV) is presented. The control architecture is structured according to the principle of composition of vehicle motions from a minimal set of elemental maneuvers that are designed and verified independently. The principled approach is based on distributed hybrid systems techniques, and spans integrated design, simulation and implementation as the same model is used throughout. Hybrid systems control techniques are used to synthesize the elemental maneuvers and to design protocols, which coordinate the execution of elemental maneuvers within a complex maneuver. This work is part of the Inspection of Underwater Structures (IES) project whose main objective is the implementation of a ROV-based system for the inspection of underwater structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria–plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award Nominee

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Article in Press, Corrected Proof

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to analyze and compare four micro-firms' organizational culture, evaluated through the Competing Values Framework (Quinn & Rohbaugh, 1983). Data was collected in 2011 and 2013 in firms selling the same type of software and providing the same kind of services, focusing on the years between 2008-2011. Findings point to somewhat different results of micro-firms, when comparing to other samples in the literature. Suggestions for future research are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at SEMINAR "ACTION TEMPS RÉEL:INFRASTRUCTURES ET SERVICES SYSTÉMES". 10, Apr, 2015. Brussels, Belgium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world is increasingly in a global community. The rapid technological development of communication and information technologies allows the transmission of knowledge in real-time. In this context, it is imperative that the most developed countries are able to develop their own strategies to stimulate the industrial sector to keep up-to-date and being competitive in a dynamic and volatile global market so as to maintain its competitive capacities and by consequence, permits the maintenance of a pacific social state to meet the human and social needs of the nation. The path traced of competitiveness through technological differentiation in industrialization allows a wider and innovative field of research. Already we are facing a new phase of organization and industrial technology that begins to change the way we relate with the industry, society and the human interaction in the world of work in current standards. This Thesis, develop an analysis of Industrie 4.0 Framework, Challenges and Perspectives. Also, an analysis of German reality in facing to approach the future challenge in this theme, the competition expected to win in future global markets, points of domestic concerns felt in its industrial fabric household face this challenge and proposes recommendations for a more effective implementation of its own strategy. The methods of research consisted of a comprehensive review and strategically analysis of existing global literature on the topic, either directly or indirectly, in parallel with the analysis of questionnaires and data analysis performed by entities representing the industry at national and world global placement. The results found by this multilevel analysis, allowed concluding that this is a theme that is only in the beginning for construction the platform to engage the future Internet of Things in the industrial environment Industrie 4.0. This dissertation allows stimulate the need of achievements of more strategically and operational approach within the society itself as a whole to clarify the existing weaknesses in this area, so that the National Strategy can be implemented with effective approaches and planned actions for a direct training plan in a more efficiently path in education for the theme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being required by markets needing huge amounts of information to be processed within a bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher performance in real-time, challenging the performance capabilities of current architectures. The advent of next-generation many-core embedded platforms has the chance of intercepting this converging need for predictable high-performance, allowing HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating general-purpose processors with many-core computing fabrics. To this end, it is of paramount importance to develop new techniques for exploiting the massively parallel computation capabilities of such platforms in a predictable way. P-SOCRATES will tackle this important challenge by merging leading research groups from the HPC and EC communities. The time-criticality and parallelisation challenges common to both areas will be addressed by proposing an integrated framework for executing workload-intensive applications with real-time requirements on top of next-generation commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The project will investigate new HPC techniques that fulfil real-time requirements. The main sources of indeterminism will be identified, proposing efficient mapping and scheduling algorithms, along with the associated timing and schedulability analysis, to guarantee the real-time and performance requirements of the applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adhesive bonding technique enables both weight and complexity reduction in structures that require some joining technique to be used on account of fabrication/component shape issues. Because of this, adhesive bonding is also one of the main repair methods for metal and composite structures by the strap and scarf configurations. The availability of strength prediction techniques for adhesive joints is essential for their generalized application and it can rely on different approaches, such as mechanics of materials, conventional fracture mechanics or damage mechanics. These two last techniques depend on the measurement of the fracture toughness (GC) of materials. Within the framework of damage mechanics, a valid option is the use of Cohesive Zone Modelling (CZM) coupled with Finite Element (FE) analyses. In this work, CZM laws for adhesive joints considering three adhesives with varying ductility were estimated. The End-Notched Flexure (ENF) test geometry was selected based on overall test simplicity and results accuracy. The adhesives Araldite® AV138, Araldite® 2015 and Sikaforce® 7752 were studied between high-strength aluminium adherends. Estimation of the CZM laws was carried out by an inverse methodology based on a curve fitting procedure, which enabled a precise estimation of the adhesive joints’ behaviour. The work allowed to conclude that a unique set of shear fracture toughness (GIIC) and shear cohesive strength (ts0) exists for each specimen that accurately reproduces the adhesive layer’ behaviour. With this information, the accurate strength prediction of adhesive joints in shear is made possible by CZM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explores the use of fluorescent probes to evaluate the responses of the green alga Pseudokirchneriella subcapitata to the action of three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II) for a short time (6 h). The toxic effect of the metals on algal cells was monitored using the fluorochromes SYTOX Green (SG, membrane integrity), fluorescein diacetate (FDA, esterase activity) and rhodamine 123 (Rh123, mitochondrial membrane potential). The impact of metals on chlorophyll a (Chl a) autofluorescence was also evaluated. Esterase activity was the most sensitive parameter. At the concentrations studied, all metals induced the loss of esterase activity. SG could be used to effectively detect the loss of membrane integrity in algal cells exposed to 0.32 or 1.3 μmol L−1 Cu(II). Rh123 revealed a decrease in the mitochondrial membrane potential of algal cells exposed to 0.32 and 1.3 μmol L−1 Cu(II), indicating that mitochondrial activity was compromised. Chl a autofluorescence was also affected by the presence of Cr(VI) and Cu(II), suggesting perturbation of photosynthesis. In conclusion, the fluorescence-based approach was useful for detecting the disturbance of specific cellular characteristics. Fluorescent probes are a useful diagnostic tool for the assessment of the impact of toxicants on specific targets of P. subcapitata algal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC10 and 72 h-EC50 values and a high concentration (above 72 h-EC90 values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of ~16, 38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals.