189 resultados para Support tool
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
O presente trabalho enquadra-se na área das redes de computadores, fazendo referência aos protocolos e ao conjunto de equipamentos e softwares necessários para a administração, controlo e monitorização desse tipos de infra-estruturas. Para a gestão de uma rede de dados, é essencial dispor de conhecimentos e documentação de nível técnico para representar da forma mais fiel possível a configuração da rede, seguindo passo a passo a interligação entre os equipamentos existentes e oferecendo assim uma visão o mais fidedigna possível das instalações. O protocolo SNMP é utilizado em larga escala sendo praticamente um standard para a administração de redes baseadas na tecnologia TCP/IP. Este protocolo define a comunicação entre um administrador e um agente, estabelecendo o formato e o significado das mensagens trocadas entre ambos. Tem a capacidade de suportar produtos de diferentes fabricantes, permitindo ao administrador manter uma base de dados com informações relevantes da monitorização de vários equipamentos, que pode ser consultada e analisada por softwares NMS concebidos especialmente para a gestão de redes de computadores. O trabalho apresentado nesta dissertação teve como objectivo desenvolver uma ferramenta para apoiar à gestão da infra-estrutura de comunicações do Aeroporto Francisco Sá Carneiro que permitisse conhecer em tempo real o estado dos elementos de rede, ajudar no diagnóstico de possíveis problemas e ainda apoiar a tarefa de planeamento e expansão da rede instalada. A ferramenta desenvolvida utiliza as potencialidades do protocolo SNMP para adquirir dados de monitorização de equipamentos de rede presentes na rede do AFSC, disponibilizando-os numa interface gráfica para facilitar a visualização dos parâmetros e alertas de funcionamento mais importantes na administração da rede.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Tourist recommendation systems have been growing over the last years, mainly because of the use of mobile devices to get user context. This work discuss some of the most relevant systems on the field and presents PSiS Mobile, which is a mobile recommendation and planning application designed to support a tourist during his vacations. It provides recommendations about points of interest to visit based on tourist preferences and on user and sight context. Also, it suggests a visit planning which can be dynamically adapted based on current user and sight context. This tool works like a journey dairy since it records the tourist moves and tasks to help him remember how the trip was like. To conclude, some field experiences will be presented.
Resumo:
In this paper we address the ability of WorldFIP to cope with the real-time requirements of distributed computer-controlled systems (DCCS). Typical DCCS include process variables that must be transferred between network devices both in a periodic and sporadic (aperiodic) basis. The WorldFIP protocol is designed to support both types of traffic. WorldFIP can easily guarantee the timing requirements for the periodic traffic. However, for the aperiodic traffic more complex analysis must be made in order to guarantee its timing requirements. This paper describes work that is being carried out to extend previous relevant work, in order to include the actual schedule for the periodic traffic in the worst-case response time analysis of sporadic traffic in WorldFIP networks
Resumo:
This paper presents an architecture (Multi-μ) being implemented to study and develop software based fault tolerant mechanisms for Real-Time Systems, using the Ada language (Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault tolerance are presented and mechanisms to achieve fault tolerance by software active replication in Ada 95 are discussed. The Multi-μ architecture, based on a specifically proposed Fault Tolerance Manager (FTManager), is then described. Finally, some considerations are made about the work being done and essential future developments.
Resumo:
In this paper, we analyse the ability of P-NET [1] fieldbus to cope with the timing requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events should be made available within a maximum bound time. The main objective of this work is to analyse how the network access and queueing delays, imposed by P-NET’s virtual token Medium Access Control (MAC) mechanism, affect the realtime behaviour of the supported DCCS.
Resumo:
Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.
Resumo:
Simulators are indispensable tools to support the development and testing of cooperating objects such as wireless sensor networks (WSN). However, it is often not possible to compare the results of different simulation tools. Thus, the goal of this paper is the specification of a generic simulation platform for cooperating objects. We propose a platform that consists of a set of simulators that together fulfill desired simulator properties. We show that to achieve comparable results the use of a common specification language for the software-under-test is not feasible. Instead, we argue that using common input formats for the simulated environment and common output formats for the results is useful. This again motivates that a simulation tool consisting of a set of existing simulators that are able to use common scenario-input and can produce common output which will bring us a step closer to the vision of achieving comparable simulation results.
Resumo:
Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
Constrained and unconstrained Nonlinear Optimization Problems often appear in many engineering areas. In some of these cases it is not possible to use derivative based optimization methods because the objective function is not known or it is too complex or the objective function is non-smooth. In these cases derivative based methods cannot be used and Direct Search Methods might be the most suitable optimization methods. An Application Programming Interface (API) including some of these methods was implemented using Java Technology. This API can be accessed either by applications running in the same computer where it is installed or, it can be remotely accessed through a LAN or the Internet, using webservices. From the engineering point of view, the information needed from the API is the solution for the provided problem. On the other hand, from the optimization methods researchers’ point of view, not only the solution for the problem is needed. Also additional information about the iterative process is useful, such as: the number of iterations; the value of the solution at each iteration; the stopping criteria, etc. In this paper are presented the features added to the API to allow users to access to the iterative process data.
Resumo:
Our society relies on energy for most of its activities. One application domain inciding heavily on the energy budget regards the energy consumption in residential and non-residential buildings. The ever increasing needs for energy, resulting from the industrialization of developing countries and from the limited scalability of the traditional technologies for energy production, raises both problems and opportunities. The problems are related to the devastating effects of the greenhouse gases produced by the burning of oil and gas for energy production, and from the dependence of whole countries on companies providing gas and oil. The opportunities are mostly technological, since novel markets are opening for both energy production via renewable sources, and for innovations that can rationalize energy usage. An enticing research effort can be the mixing of these two aspects, by leveraging on ICT technologies to rationalize energy production, acquisition, and consumption. The ENCOURAGE project aims to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable active participation in the future smart grid environment.The primary application domains targeted by the ENCOURAGE project are non-residential buildings (e.g.: campuses) and residential buildings (e.g.: neighborhoods). The goal of the project is to achieve 20% of energy savings through the improved interoperability between various types of energy generation, consumption and storage devices; interbuilding energy exchange; and systematic performance monitoring.