104 resultados para Simulation modelling
Resumo:
One important step in the design of air stripping operations for the removal of VOC is the choice of operating conditions, which are based in the phase ratio. This parameter sets on directly the stripping factor and the efficiency of the operation. Its value has an upper limit determined by the flooding regime, which is previewed using empirical correlations, namely the one developed by Eckert. This type of approach is not suitable for the development of algorithms. Using a pilot scale column and a convenient solution, the pressure drop was determined in different operating conditions and the experimental values were compared with the estimations. This particular research will be incorporated in a global model for simulating the dynamics of air stripping using a multi variable distributed parameter system.
Resumo:
A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
Coal contains trace elements and naturally occurring radionuclides such as 40K, 232Th, 238U. When coal is burned, minerals, including most of the radionuclides, do not burn and concentrate in the ash several times in comparison with their content in coal. Usually, a small fraction of the fly ash produced (2-5%) is released into the atmosphere. The activities released depend on many factors (concentration in coal, ash content and inorganic matter of the coal, combustion temperature, ratio between bottom and fly ash, filtering system). Therefore, marked differences should be expected between the by-products produced and the amount of activity discharged (per unit of energy produced) from different coal-fired power plants. In fact, the effects of these releases on the environment due to ground deposition have been received some attention but the results from these studies are not unanimous and cannot be understood as a generic conclusion for all coal-fired power plants. In this study, the dispersion modelling of natural radionuclides was carried out to assess the impact of continuous atmospheric releases from a selected coal plant. The natural radioactivity of the coal and the fly ash were measured and the dispersion was modelled by a Gaussian plume estimating the activity concentration at different heights up to a distance of 20 km in several wind directions. External and internal doses (inhalation and ingestion) and the resulting risk were calculated for the population living within 20 km from the coal plant. In average, the effective dose is lower than the ICRP’s limit and the risk is lower than the U.S. EPA’s limit. Therefore, in this situation, the considered exposure does not pose any risk. However, when considering the dispersion in the prevailing wind direction, these values are significant due to an increase of 232Th and 226Ra concentrations in 75% and 44%, respectively.
Resumo:
The aim of this work was to simulate the radionuclides dispersion in the surrounding area of a coal-fired power plant, operational during the last 25 years. The dispersion of natural radionuclides (236Ra, 232Th and 40K) was simulated by a Gaussian plume dispersion model with three different stability classes estimating the radionuclides concentration at ground level. Measurements of the environmen-tal activity concentrations were carried out by γ-spectrometry and compared with results from the air dispersion and deposition model which showed that the stabil-ity class D causes the dispersion to longer distances up to 20 km from the stacks.
Resumo:
Adhesively bonded repairs offer an attractive option for repair of aluminium structures, compared to more traditional methods such as fastening or welding. The single-strap (SS) and double-strap (DS) repairs are very straightforward to execute but stresses in the adhesive layer peak at the overlap ends. The DS repair requires both sides of the damaged structures to be reachable for repair, which is often not possible. In strap repairs, with the patches bonded at the outer surfaces, some limitations emerge such as the weight, aerodynamics and aesthetics. To minimize these effects, SS and DS repairs with embedded patches were evaluated in this work, such that the patches are flush with the adherends. For this purpose, in this work standard SS and DS repairs, and also with the patches embedded in the adherends, were tested under tension to allow the optimization of some repair variables such as the overlap length (LO) and type of adhesive, thus allowing the maximization of the repair strength. The effect of embedding the patch/patches on the fracture modes and failure loads was compared with finite elements (FE) analysis. The FE analysis was performed in ABAQUS® and cohesive zone modelling was used for the simulation of damage onset and growth in the adhesive layer. The comparison with the test data revealed an accurate prediction for all kinds of joints and provided some principles regarding this technique.
Resumo:
This paper studies the dynamical properties of systems with backlash and impact phenomena. This type of non-linearity can be tackled in the perspective of the fractional calculus theory. Fractional and integer order models are compared and their influence upon the emerging dynamics is analysed. It is demonstrated that fractional models can memorize dynamical effects due to multiple micro-collisions.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.